RadiSys - ASM 386 Macro
Assembler Operating
Instructions

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

07-0578-01

December 1999

EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
isatrademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel isaregistered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 0 1999 by RadiSys Corporation

All rights reserved

Quick Contents

Chapter 1. Introduction

Introduces the manual, and the assembler and its related utilities.

Chapter 2. Using the Assembler

An overview of the two methods by which the assembler's actions can be controlled
in the host environment: the command-line syntax and the standard assembler
controls that may be embedded in program sources.

Chapter 3. Assembler Control Reference

A complete annotated list of the assembler-control switches.

Chapter 4. The Listing (Print File)

A description of the assembly listing's contents.

Appendix A. Error Messages

A descriptive list of error and warning messages issued by the assembler.
Appendix B. System Hardware and Software Requirements
A description of the hardware and software requirements, and the procedure for

making required modifications to the operating system.

Index

ASM 386 Macro Assembler Operating Instructions iii

Notational Conventions

The notational conventions described below are used throughout this manual :

italics

system-id

VX.y

[]
|

punctuation

<ENTER>

Indicate a metasymbol that must be replaced with an item that fulfills
the rules for that symbol.

Isageneric label placed on sample listings where an operating system-
dependent name would actually be printed.

Isageneric label placed on sample listings where the version number of
the product that produced the listing would actually be printed.

Brackets indicate optional arguments or parameters.
The vertical bar separates options within brackets|[] or braces{ }.

Ellipses indicate that the preceding argument or parameter may be
repeated.

Punctuation other than ellipses, braces, and brackets must be entered as
shown. For example, the equal sign in the following statement must be
entered as shown:

PAGEW DTH=78

Indicates a carriage return.

fil e-spec Isthedevice name, the filename, and the file extension, if any.

Related Publications

These manuals contain information on system utilities:

« Intel386™ Family Utilities User's Guide
« Intel386™ Family System Builder User's Guide

These additional Intel manuals may be of interest to users of the assembler and
utilities in the DOS environment:

e iC-386 Compiler User's Guide
* PL/M-386 Programmer's Guide

Contents

1 Introduction
ADBOUL TRISIMANUELcoeteeiicieceeeeece e e e e 1
ADOUL ThiS ChaDLEYceieiieeie e e 1
TheMacro ASSEMDIETc.ooiiei et 1
The SysStemM ULIHITIES ..ot 2
INEr-t00l CONSISLENCY ... veeterieeueeeeeeie sttt et ne s 4
Inter-nost POrtabilitycooeeiie s 4
2 Using the Assembler

L0001 07> 10T0 IS | = 5
Using Controls on the Command Linecccocvvevevenenenieeeeseeseeee e 6
Sample Invocation COMMEANGS........ccccevereerererese e 7
Interrupting the ASSEMDBIEScc.ecieieeceec e 8
CONLIOIS ...ttt st st sttt e neebe e 8
Primary CONIOIScoueieresese ettt s nnea 8
GENEral CONIOIS......cuiiiieeeirieeeie st seenes 11
Using Controlsin the SoUrce File.........ccvcveeveceserese e 12
Using ControlSWithin MaCIOS..........ccvieeeeeeeeeeseses et 14
TN LS o SR 16
Source Program RESIFCHIONSc.coverereiesiseceeseesee e see e 16

(O 10 11 o100 | = S 18
WOTK FITES. ...t 19
5SS o - 20
Automation of Program Invocation and EXECULION.........cc.ccveeereveereseesesnneens 21
DOS BaCh FIlES....ccuiieeieiereeesie et 21
Passing Parametersto Batch Files.........cccovvoveiececcce v 21

Using Batch Commands..........ccceveeereeeeresene s seseseeeesessie e e 22

DOS Command FIlES........coeiiieiienee e 22
Redirection of Command Input to Batch Files........ccccoovvvvivecciececenn, 23

ASM 386 Macro Assembler Operating I nstructions Contents %

Assembler Control Reference

26
27
28
29
31

35
36
37
39

4

ERERER

50
51
53

vi

The Listing (Print File)
The Default Print File........ccooeiiieee e
Print File Headers.........ccoooveiiinniieseeseeee e
Location Counter (LOC)coeeuereerieneieeniesie e
Equated Symbols (EQU Directive)cccceeerereennnne
Floating-point Stack Elements (ST)ccoceveeverenennene
COMM Variablesand Labels...........ccccovveinenncneen
Object Code (OBUJ)cc.eeuereeeeeeienie et
Relocatable or External Code (R, E)cecoevvviivveviieenne
Include Nesting Indicator (=)cocoeoveeeeneienenere e
Line NUMDBErs (LINE)ocoieiiiieeeee e
Macro Expansion INdicator (+) ...coceeeeeeeeeneeieneneenien
Source Statements (SOURCE)cooeeieienenee e
The Symbol Table.......ccooiie e
Symbol Table Fields.........ccoooeriiiiiiiieeeeeee e,
Code macros (C MACRO)cocviereneneeeeee e
Public and External Symbols (PUBLIC, EXTRN)

Contents

55
59
60
60
61
61
62
62
62
63
63
63

66
66
66

Floating-point Stack Elements (F STACK)..............
INSEFUCETION <o

67
67
67
67
67
67
67
68
68
68
68
68
69

A Error Messages

Fatal EFTOIS.....ccvecvecreeie ettt st st eete st sareeraeereens
Invocation Control Errors.........ceeeveeeeeeeeeeereesreeivesinesnens
[JO EITOIS vttt ettt ettt s srees
INEEMNAl EXTOIS....vecveciecie ettt
Nonfatal Errors and Warnings..........ccceeeveeveeseseeeeseeseseesennes
Y1 G = (0] £ P
WaANINGS oot es
MACTO EITOISoeee et ee e
CONLIOl EITOIS....cccvieieciecie ettt be s
Source File Error and Warning Messages..........cocevevvrerennenns

65
65
66
66
67
67
68
69
69
70

B System Hardware and Software Requirements

Hardware and Software Requirements...........ccoceeeereeneneseenne.
Modifying the System Configurationcccceeererernreene.

81
82

Index

ASM 386 Macro Assembler Operating I nstructions

Contents

83

vii

Tables

Table 2-1. Assembler Primary CONrolScccoovveieeeieeieieeeseseeseseesesee e saeseeseeseens 10
Table 2-2. Assembler General CONtrOlS.........cvvrreereneirreeese s 11
Table 2-3. Assembler Program RESIHCHIONSccvceeeeeeieriee et ae e see e 17
Figures

Figure 1-1. Processor Trandation SYStemccceieeeeieeniere e 2
Figure 2-1. Macro Assembler Logical File........ccoooiiiiiiiiii e 19
Figure 3-1. Sample Listing for GEN/NOGEN/GENONLYcccoceriiriiriniireeeeiereeneas 33
Figure 3-2. Sample Listing for SAVE/RESTORE........ccoooiiiiiiiiiieneeseeee e 46
Figure4-1. Sample Print File Page.........cocooiiiiiieieeeeee e 56
Figure4-1. Sample Print File Page (continued)...........cocooeiiienienenencneeee e 57
Figure4-1. Sample Print File Page (continued)...........cocoooeiiienenenencneeee e 58
Figure 4-2. Sample Symbol Table ..o 65

viii

Contents

Introduction

About This Manual

This manual describes how to use the Macro Assembler on DOS and iRMX® host
systems. Theinformation contained in this manual supplements the manual set for
the ASM 386 assembler and its associated utilities.

ASM 386 supports the Intel386™" Intel486™, and Pentium® microprocessors as well
as floating-point coprocessors. Throughout this manual, the word "processor” refers
to any of the above microprocessors and the words "floating-point coprocessor" refer
to any of the related math coprocessors, as well as the Intel 486 and Pentium
processor's built-in floating-point functions.

Bound with this manual is the ASVI386 Assembly Language Reference. Thisisthe
basic reference for the assembler language, and contains information that is
independent of the host operating system (e.g., the complete instruction set).

About This Chapter

This chapter introduces the assembler and its related utilities. The assembler
generates code for target systems based on the Intel 386, Intel 486, and Pentium
microprocessors. The utilities are tools that prepare |oadable and executable modules
for execution on the target system. Figure 1-1 illustrates the devel opment process
using Intel trandators and utilities.

The Macro Assembler

The assembly language trandator has the following characteristics:
» Trandatesfiles written in assembly language into linkable object modules

e Produces object modules (OMF-386) that can be assembled separately and
linked to programs written in ASM 286 assembly language

The assembler supports the full processor and floating-point coprocessor instruction
sets. The instruction set and assembler mnemonics are compatible with ASM 286, the
assembly language for the 286 processor.

ASM 386 Macro Assembler Operating Instructions Chapter 1 1

Program modules may be debugged with Intel debuggers or in-circuit emulators such
asthe ICE™-386 system.

Activity Program Tool File
Create C-386
Source
Files PL/M-386

ASM386/286
Source Code | |
ASM386 Files
Translate
Source PL/M386
«
Object
Modules
LIB386 <—1
\—) Library
Link - —T
Object BND386

Modules

Configure «€— Relocatable LOAD ‘ ﬁ\ NOLOAD Linked
9 Program Module

A

System NOBOOTLOAD « A
Sotware b) BLD386
Absolute
<— Program BOOTLOAD »L
Map > MAP386
F——>

Map

File

Execute User
Program 7| System

W-3418

Figure1-1. Processor Trandation System

The System Utilities
The system tilities are a set of software development tools that:

* Combine modules produced by the assembler, by compilers generating
OMF-386 code, and by the Librarian (L1B386) into executable programs

e Support incremental linking
* Assign addresses to code in the processor's 4-gigabyte physical address space

e Generate print files containing system cross-reference listings, error and warning
messages

2 Chapter 1 Introduction

Object files created by the assembler must be processed by the binder (BND386)
and/or the system builder (BLD386) before they can be loaded and executed.
BND386 creates an executable, relocatable program from separately trandated
modules. Thelibrarian (LI1B386) organizes linkable modulesinto alibrary. The
mapper (MAP386) produces a listing describing the features of linkable or executable
object files. All three are considered linking tools.

BLD386 isnot alinking tool. It configures system software for the processor
operating in protected mode and using virtual addressing. BL D386 may be used to
perform the following tasks:

e Creating and modifying descriptor tables, segment and system descriptors
(including gates), and task state segments

» Creating page tables and directories for use in paged memory systems
e Assigning physical addresses to segments and descriptor tables

» Configuring system interface files for use in devel oping application programs

ASM 386 Macro Assembler Operating Instructions Chapter 1 3

Inter-tool Consistency

Whether or not you have previous experience using Intel software development tools,
such as language trandlators like the assembler and related system utility programs,
you will find broad consistency among the tools described in this manual. Most Intel
language processors, for example, have similar invocation syntax, message formats,
and features.

The various Intel assemblers and compilers for any particular target generate the
same object module format. Therefore you can use the appropriate mix of assembly
and higher-level language modules to develop your application system.

Inter-host Portability

The user interfaces of the various tools within afamily are also consistent across host
environments. This meansthat if you can operate an assembler or acompiler on a
DOS system, for example, you aready know most of what is required to operate the
iRMX-hosted version of that tool.

4 Chapter 1 Introduction

Using the Assembler

This chapter explains how to anticipate and control the input and output of the
assembler. It contains full textual explanations for new users and tabular summaries
for those already familiar with the assembler.

Command Syntax

Assembler invocation syntax is as follows:

ASMB86 fil e-spec [control...| %racro-string]
Where:
ASNMB86 is the command.
file-spec represents the name and extension (optional) of the sourcefile
to be processed.
control represents a switch that controls the process, such as DEBUG,

%racro-string

NOOBJECT, PRI NT and others. Y ou may abbreviate them as
shown in Chapter 3.

directs the assembler to include the specified macro. The
macro string is alegal statement of up to 212 charactersin the
assembler macro processing language. Thismacrois
processed before reading the source files. The macro
metacharacter % must precede the macro-string, as follows:

ASMB86 MYPROG "¥set (a, 1) "
Only one macro may be specified in each command.

See also: Using Controls with Macros, in this chapter

ASM 386 Macro Assembler Operating Instructions Chapter 2 5

Using Controls on the Command Line

A set of assembler-control switches govern the format, processing, and content of
both the input source and the output files. These switches are called controls and
they also may be embedded in source files and included files. Controls are widely
used among Intel language trandators.

Most controls alow you to regulate the form and/or content of assembler output files.
For example, the USE16 control directs the assembler to generate 16-bit addresses
and offsets for the current module. Some controls are in pairs that specify on/off
conditions. The off condition isindicated by the word NO at the beginning of the
name. For example, use PRI NT to create a source listing or NOPRI NT to suppress the
listing.

Not al controls are used in commands. The EJECT and SAVE/ RESTORE controls
cannot be specified on the command line.

Control useisoptional. If you use no controlsin your invocation commands, the
assembler and utilities function according to default settings described in Chapter 3
and in the other supplied publications.

For the following command example, a source module named PROGL. SRCis
assembled using default control settings. The assembler writes the object and listing
file to predetermined file specifications, using the source file name with the
extensions OBJ and LST.

ASM386 PROGL. SRC

The object fileis PROGL. OBJ and the listing is named PROGL. LST; both are placed
in the current working directory.

Some controls take one or more parameters. Use parentheses to indicate the
parameter delimiters. Separate multiple parameters by commas and enclose the
entire group in parentheses.

Enclose a control's parameter in quotation charactersiif it contains any of the
following characters:

() =R s & <>
For example:

ASMB86 MYPROG SRC Tl TLE("Joe's Progrant)

6 Chapter 2 Using the Assembler

If the control's parameter contains quotation characters, enclose it in apostrophes.
This allows the assembler to distinguish parameter strings from strings to be parsed.
For this reason, a macro or title statement in the command must also be enclosed in
guotation characters.

See also: Using Controlsin the Source File, in this chapter
assembler controls, Chapter 3
listing file, Chapter 4

Sample Invocation Commands
The following invocation examples show general guidelines for control usage.

1. Assumethat a source file named MYPROG. SRCisin the working directory. Inits
simplest form, the command lineis:

ASM386 MYPROG SRC

The assembler uses the default values of the control settings to write the object
module to the file MYPROG. OBJ and the listing to MYPROG. LST.

2. Assume that the source file is again named MYPROG. SRC and the command line
is:

ASMB86 MYPROG. SRC PRI NT(PROGL. LST) TI TLE(PLANS)
PAGEW DTH(78)

The results are:

* Theobject fileis named MYPROG. OBJ (the default) and the listing fileis
named PROGL. LST, as specified by the PRI NT control.

e TITLE places PLANS in the header of each pagein the listing.

» The pages are 78 characters wide, as specified, and 60 lines long, the default
value for PAGELENGTH.

ASM 386 Macro Assembler Operating Instructions Chapter 2 7

3. Assume that the source file is named MYPROG. SRC and the command is:
ASMB86 MYPROG. SRC XREF DEBUG TYPE
Thisinvocation results in the following:

« By default, the object file is named MYPROG. OBJ and thelisting is named
MYPROG. LST.

* Theobject file contains local symbol information (DEBUG) and type
information (TYPE) for variables and labels. Thisinformation is useful for
symbolic debugging.

e Thelisting has the default format: width of 120 characters and length of 60
characters.

» The cross-referenced symbol table listing isincluded at the end of the listing
(XREF).

Interrupting the Assembler

Use <Citrl-Break> to interrupt or abort the assembler. <Ctrl-C> does not work as the
interrupt character like <Ctrl-Break>.

Controls

The assembler recognizes two kinds of controls, primary and general, which affect
the assembly of a program as explained in Primary Controls or General Controls.
Assembler control names can be abbreviated as shown in Table 2-1 and Table 2-2.

See also: Using Controlsin the Source File, in this chapter

Primary Controls

Primary controls set conditions that apply throughout the entire assembly of a
module. For example, the DEBUG primary control causes all local symbol
information from the source module to be included in the object file. Table 2-1 lists
the primary controls. The actions of the NO controls are the opposite of the
descriptions of their companion control.

Place primary controlsin the first line in the source file. Such lines are called
primary control lines. Blank lines and comment lines are considered noncontrol
lines.

8 Chapter 2 Using the Assembler

If you specify the same primary control in a source file as you've entered on the
command line, the command-line control's specification takes effect. If you specify a
primary control in multiple primary control lines, the condition specified last takes
effect.

For example, assume that the source file contains the following primary control lines:

$DEBUG NOPAG NG
$PRI NT(MYLI ST)
$PAG NG

Assume the invocation lineis as follows:
ASM386 MYFI LE. ASM PRI NT NODEBUG
The assembly proceeds as follows:

e Thesourcelisting is sent to afile named MyFI LE. LST. The default file nameis
the source module name with the LST extension. PRI NT in acommand overrides
PRI NT in the control line, so that the listing appears as MyFI LE. LST instead of
MYLI ST.

* Nodebug information isincluded in the object file because NODEBUG in the
command line has precedence over DEBUG in the contral line.

e Thelisting is paged because PAG NGin the third control line cancels out
NOPAG NGin thefirst control line.

ASM 386 Macro Assembler Operating Instructions Chapter 2 9

Table2-1

. Assembler Primary Controls

Controls Abbr.* Default Action by Assembler
DATE (date) DA System time No effect; provided for compatibility with
ASM86.
DEBUG DB NODB Places local symbol information in the
NODEBUG NODB object file.
ERRORPRINT[(file-spec)] EP NOEP Creates a file containing error or
NOERRORPRINT NOEP warning messages.
MACRO(parameter) MR MR Specifies that macros are processed
NOMACRO NOM during assembly.
R
MOD386 -- MOD386 Verifies that the input file meets
MOD376 Intel386, 376, or Intel486 requirements,
MOD486 respectively.
N387 -- N387 Generates code for Intel387™ or
N287 Intel287™ coprocessors.
OBJECT((file-spec)] oJ 0J Creates an object module.
NOOBJECT NOOJ
PAGELENGTH(length) PL PL(60) Specifies lines/page in the listing.
PAGEWIDTH(width) PW PW(120) Specifies characters/line in the listing.
PAGING Pl Pl Formats the listing in pages.
NOPAGING NOPI
PRINT](file-spec)] PR PR(source- Creates a source listing to be printed or
file.LST) displayed.
NOPRINT NOPR
SYMBOLS SB NOSB Places a symbol table in the listing.
NOSYMBOLS NOSB
TYPE TY NOTY Places type information for public
NOTYPE NOTY symbols in the object file.
USE32 u32 u32 Generates 16- or 32-bit addresses and
USE16 u16 offsets for the current module.
WORKFILES(dir],...]) WF WF(:WORK:) Names directory to contain intermediate
files.
XREF XR NOXR Places a cross-referenced symbol table
NOXREF NOXR in the listing.

*

10 Chapter 2

Abbreviations may be used only in control files or in source files, not in invocation commands.

Using the Assembler

General Controls

A general control causes an immediate action and takes effect with the next source
line. For example, EJECT places the next line of the source file listing on a new
page, and LI ST specifies that the source listing resumes with the next source line
read. Table 2-2 liststhe general controls.

Y ou can specify general controls many times within a source file to set conditions
during assembly. For example, you can selectively include portions of the source
codein the listing by starting it with LI ST and stopping it with NOLI ST as desired.
As another example, you can specify | NCLUDE at selected locations in order to insert
the contents of files.

The command-line equivalents of general controls take effect before the first source
lineisread, but have no precedence over genera controlsin the sourcefile. The last
setting specified isin effect.

Table 2-2. Assembler General Controls

Control Abbr.* Default Assembler Function

EJECT EJ Starts a new page in the listing (print file).

GEN GE GENONLY Controls the listing of macros in the listing

GENONLY GO (print file).

NOGEN NOGE

INCLUDE IC -—- Inserts the specified file in the source input.

LIST LI LIST Turns the source listing on.

NOLIST NOLI Turns the source listing off.

SAVE SA -—- Saves settings of affected controls on the
stack.

RESTORE RS Restores settings of affected controls from
the stack.

TITLE TT Determines the page header for the listing
(print file).

*

Abbreviations may be used only in control files or in source files, not in invocation commands.

ASM 386 Macro Assembler Operating Instructions Chapter 2 11

Using Controls in the Source File

12

Y ou can place assembler controls directly in the source file, giving you selective
control over sections of the program. For example, you can suppress certain sections
of the source listing with the NOLI ST control. Placing controls within a source
module can also save time because you do not need to retype them each time you
invoke the assembler for a particular module.

To temporarily change a condition specified in a control line, you need not edit the
source. You can simply specify the new condition using a primary control on the
command line, and it takes effect because a primary control in a command has
precedence over the same primary control within the source file. This technique
cannot be used with general controls.

Source file lines containing controls are called control lines. They begin with the
dollar sign ($) and contain any number of controls and their parameters, up to the
host operating system's limit for charactersin a source line. Control lines do not
contain other types of assembly language statements. 1f you do not specify a control,
its default value isin effect. Table 2-1 and Table 2-2 give the default value of each
control.

See also: Control defaults, Chapter 3

Control lines are recognized and processed immediately when they appear in the
source file except when included in macro definitions. The guidelines for specifying
controls given earlier in this chapter apply to control lines with the following
additions and exceptions:

» Begin the control line with adollar sign ($) in column one. The first control
must follow the dollar sign immediately, asfollows:

$PAGEW DTH(132)
* Terminate control lineswith a carriage return (CR).
e Separate each control with a space.

* Primary controls must be placed before any general controls or source code in a
source file.

» Specify multiple controls on asingle line but, unlike other assembly language
statements, do not continue control lines.

e Control lines may end with comments. A comment begins with a semicolon (;)
and continues for the remainder of theline. For example:

$TITLE (Section2) EJECT; next section

Chapter 2 Using the Assembler

« A control with a parameter uses parentheses to indicate the parameter. Multiple
parameters are separated by commas and the entire group isenclosed in
parentheses.

* No blanks are required between controls and parameters because the parentheses
around the parameters act as separators. For example, the following two lines
are equivalent:

$PRINT (MYPROG PRT) PAGEW DTH(78) NOPAG NG
$PRI NT(MYPROG. PRT) PAGEW DTH(78) NOPAG NG

However, you must enter blanks between controls where no parentheses act as
separators. For example:

$XREF NOPAG NG

» Enclose names of included, listing, errorprint, and object files specified within
either single or double quotation marksiif they contain spaces or any of the
following characters:

, () =#1 $ %\ ~+- & <>[1]
For example:
$1 NCLUDE (" d ude(s).INC")

See also: Specifying contrals, in this chapter
Using Controls within Macros, in this chapter

In the following example, controls specified at invocation can override controls
within the sourcefile.

Example
Assume that the source file MYPROG. ASMcontains the following control line:
$SYMBOLS PAGEW DTH(60)
The command is:
ASMB86 MYPROG SRC NOPRI NT

In this case, the control lines do not produce the usual results. Normally, SYMBOLS
adds a symbol table to the listing and PAGEW DTH sets the width of linesin the
listing. Placing NOPRI NT on the command line causes SYMBOLS and PAGEW DTH to
be ignored because no listing is generated.

The following section explains some of the considerations for specifying controls
within macro definitions.

ASM 386 Macro Assembler Operating Instructions Chapter 2 13

Using Controls within Macros

The assembler usually recognizes and processes control lines as soon as they appear
in asourcefile. However, the assembler can conditionally generate control linesif
you place them within macro definitions or the body of a statement containing the | F,
WHI LE, or REPEAT predefined macros. The assembler then delays recognition and
execution of the control line until the macroiscalled or the | F, WHI LE, or REPEAT is
expanded.

The assembler macro processor has two scanning modes. normal and literal. In
normal scanning mode, the assembler recognizes and expands all macros. In literal
scanning mode, the assembler treats nested macro calls as ordinary text strings.

Literal mode is selected by placing an asterisk (*) after the macro metacharacter,
which is % by default, asin the following example:

% DEFI NE(AB) (%EVAL(%TOM))

Literal mode isalso in effect by default for THEN and EL SE clauses, because these
clauses are conditional in nature. The examples at the end of this section also
illustrate these concepts.

See also: Macro processing language and scanning modes, ASM386 Assembly
Language Reference

The scanning mode in effect when the control line indicator $ is scanned determines
how the assembler processes a control line. If the $ is encountered when the macro
processor isin normal mode, the assembler treats the rest of the line as a control line
and processesit immediately. If the$ isscanned in literal mode, the $ and the rest of
the line are treated as ordinary text.

The following criteria apply to the way control lines are scanned:

e Thelinefeed (LF) at the end of acontrol line must be at the same nesting level
asthe opening $. Parentheses must be used in pairs.

* A control linein amacro adds one level to the macro nesting.

e |f amacro error occursinside a control line, the traceback of macro nesting
information includes an item for the control, asa"call" to the $.

14 Chapter 2 Using the Assembler

The following examplesillustrate the use of controlsin macros.

Examples
1. Thisexample shows a macro whose definition isincluded from another file;

YDEFI NE(MAC) (
$1 NCLUDE(FI LE1)

)

Because DEFI NE is called normally, with % instead of %*, the body of the
definition is scanned in normal mode. Consequently, the I NCLUDE control line
isrecognized immediately and MAC is defined as the contents of the | NCLUDE
file. In other words, the contents of FI LE1 are stored as the value of MAC.

2. Thefollowing example shows the definition of a macro that includes a file when
itiscalled:

% DEFI NE(MAC) (
$1 NCLUDE(FI LE2)

)

MAC is scanned in literal mode because of the %* notation preceding the DEFI NE
function. Consequently, the | NCLUDE control line itself isthe definition of MAC,
not the contents of FI LE2, as would have been the case in normal mode (refer to
the previous example). When MAC iscalled, FI LE2 isread.

3. Thefollowing exampleillustrates how to conditionally include one of two files
using | F. . THEN. . ELSE clauses:

% F(condition) THEN (
$1 NCLUDE(FI LE3)

) ELSE(

$1 NCLUDE(FI LE4)

) FI

This example demonstrates how scanning modes are combined. Even though | F
is not preceded by %*, both the THEN and EL SE clauses are scanned in literal
mode because they are conditional statements. However, because % | F was not
used, the selected THEN or ELSE clause is scanned in normal mode and FI LE3 or
FI LE4 isimmediately included. Inthissituation, % | F would not be useful. 1 F
must always be closed by an FI after the last parenthesis.

ASM 386 Macro Assembler Operating Instructions Chapter 2 15

4. The following example shows the definition of a macro that generates either the

LI ST or NOLI ST control:

9% DEFI NE(PRINT(X)) (
$UXo) LI ST
)

The macro call

9%PRI NT()

would produce the control line
$LI ST

while the call

%Rl NT(NO)

would produce the control line

$NOLI ST

File Usage

File sharing conflicts may occur when using an Intel trandator or Relocation and
Linkage (R&L) tool in a DOS network environment. Before invoking an Intel
trandator or R & L tool (with network support from DOS), invoke the DOS V3.0 or
later SHARE command. It isrecommended that you invoke the SHARE command
in your AUTOEXEC.BAT file.

After successful assembly, the assembler can produce an object file, alisting, and an
errorprint file. Each of thesefilesis optional; certain assembler controls allow you to
specify them. Other assembler controls allow you to regulate their contents.

Source Program Restrictions

16

The assembler places quantitative restrictions on certain items within source
programs, such as the number of charactersin a sourceline. Most of these
restrictions are listed in Table 2-3.

If your program exceeds a limit, the assembler returns an error. Most quantitiesin
Table 2-3 are upper limits, but some items show both upper and lower limits. The
table also points out some items for which there are no limits.

Chapter 2 Using the Assembler

Table 2-3. Assembler Program Restrictions

Item

Limit

Source lines/programs

Characters per line
Characters per identifier

Symbols per module

Continued lines per statement
Characters per string

Segment size

Number of bytes
Procedure nesting

Items in each PUBLIC, EXTRN,
and PURGE directive

Parameters in all macro calls

Combined total of macro calls,
active macro expansions,
and nested INCLUDEs

Items per storage initialization list
Fields per record
Record size

Structure size

Fields per structure

Parameters per codemacro definition

Bytes generated by each codemacro

No limit
255 including CR/LF and nonprinting characters
31 unique, up to 255 total

2700 standard
3200 with Intel Above™ Board

No limit
255 including enclosing quotation marks

64K bytes (USE16 segments) 4 gigabytes (USE32
segments)

Size cannot exceed 1K that can be duplicated

20 levels per segment

Limited by the number of symbols
255

64 levels
No limit
32

32 bits

64K - 1 bytes (USE16)
4 gigabytes -1 (USE32)

255
15
255

ASM 386 Macro Assembler Operating Instructions

Chapter 2

17

Output Files

18

There are three possible output files: the object file, the listing or print file, and the
errorprint file.

The object file contains assembled processor machine code, data initializations,
symbol and type information, and the information necessary for combining the object
module with other modules. After processing by the processor system utilities, the
object file for a source module becomes part of an executable program. The
assembler produces the object file by default unless you specify the NOOBJECT
control.

The object file can optionally contain symbol and type information that is useful for
symbolic debugging and inter-modul e type checking. Theinformation isincluded if
you specify the assembler's DEBUG and TYPE controls.

Theligting file (or print file) contains the source lines, expanded macro source code,
object code, and any source file error or warning messages produced by the
assembler. Several assembler controls determine the format and content of the file.
For example, the SYMBOLS control directs the assembler to include an optional list of
symbols defined in the source program, called the symbol table. The assembler
produces the listing by default unless you specify the NOPRI NT control. 4.

The errorprint file is a summary of the errors and warnings encountered during
assembly. It contains the source lines in which the errors occurred and the error
messages. By default, this summary goes to the console output with the logical name
: CO . If the ERRORPRI NT file has not been assigned to another file, it is directed to
the screen. The assembler does not produce an errorprint file unless you specify the
ERRORPRI NT control. Figure 2-1 shows the assembler'slogical files.

See also: NOOBJECT, DEBUG, TYPE, SYMBOLS, NOPRI NT, and ERRORPRI NT
controls, Chapter 3
listing file, Chapter 4

The DOS manual indicates that the maximum number of charactersin a pathnameis
63, but in practice various products seem to restrict pathnames to less than 63
characters. To ensure compatibility with all products, make sure that all output
pathnames do not exceed 43 characters. A fatal error is generated if your output
pathname istoo long, and the trandator or R & L tool aborts.

IniRMX systems, you can use the attachfile command to assign alogical nameto a
long pathname. For example:

af /directory/subdirectory/subdirectory as f
Y ou can then use the logical name as follows:

asnB86 :f:file.asm

Chapter 2 Using the Assembler

Errorprint
/ —
ASM386
Macro F———>
Assembler
Object
File

W-3419

Figure 2-1. Macro Assembler Logical File

Work Files

The assembler creates temporary work files while processing the source and deletes
them when the assembly is completed. These files are alocated to the : WORK:
logical device and they do not conflict with any other files.

Under DOS, you may use the SET command to select the drive on which work files
are placed. For example, this command places them in the root directory on drive D:

C>SET :work: =D:\

This capability is useful when avirtual disk in memory has been created with the
DOS VDI SK. SYS device driver.

Confusion may occur on user-defined logical names. The default assignments for
:FO: through :F9: and :WORK: are not in the user manuals. If theselogical devices
are not defined with the SET command, the default assignments for :FO: through :F9:
areto devices A through J. The default assignment for :WORK: is the current default
disk. Usethe SET command to assign the desired logical devices.

Under iRMX, :work: is defined by the operating system as the : SD:work directory.
The user can establish other logical names (such as :FO:, :F1:, etc) using the
attachfile command.

ASM 386 Macro Assembler Operating Instructions Chapter 2 19

Files consisting of an 8-digit hexadecimal number with no extension may be left in
the current :WORK: directory after you type CTRL-BREAK to abort an Intel
trandator or R & L tool or a user program converted to DOS with UDI2DOS.EXE.
These are temporary files created by these programs to store intermediate data. They
are normally deleted at the end of a program’s normal execution. Delete or ignore the
files. Noimportant information is contained in them.

Messages

After invocation, the macro processor within the assembler scans the source file for
macros and processes them. In the next phase, referred to as pass 1, the assembler
constructs the symbol table. Lastly, during pass 2, the assembler completes the actual
trandation. Most assembler errors are detected during pass 1. If the assembler
detects an error in pass 2, the error message contains "(PASS 2) "

Immediately after invocation, the assembler displays the following sign-on message:

systemid | ntel 386 MACRO ASSEMBLER Vx.y
Copyright year(s) Intel Corporation

Where:

systemi d isthe string returned by the operating system.
X.y is the version number.

year (s) lists the copyright year(s).

If the assembler did not detect any fatal errors during assembly, it displays the
following sign-off message:

ASSEMBLY COVPLETE, n WARNI NGS m ERRORS

where n and mrepresent the number of warning and nonfatal error conditions,
respectively, that occurred during processing.

When the assembler detects certain severe errors, it stops processing the source file
and exits to the operating system without producing an object or listing. It produces
an error message ending with "ASM386 TERM NATED".

See also: Assembler error messages, Appendix A

20 Chapter 2 Using the Assembler

Automation of Program Invocation and Execution

DOS allows you to invoke and execute multiple programs either by using batch files
or command files. The following sections provide examples that demonstrate how to
use these files with the assembler and the binder, BND386.

See also: For details on BND386 and the other utilities, Intel386 Family Utilities
User's Guide.

DOS Batch Files

A batch file contains one or more invocation commands or DOS batch commands
that DOS executes one at atime. All batch files must have the extension BAT. This
section explains how to create batch files that invoke several programs at once and
that can operate on different sets of input files.

See also: DOS batch files, in your DOS manual

D Note
DOS batch files cannot be nested. If a batch file references another
batch file, control passes directly to the other batch file, but control
does not return to the referring batch file.

Passing Parameters to Batch Files

It is possible to pass parameters to a DOS batch file when the file executes. The
batch file can do similar work on a different program or set of data each time the
batch file is executed. The following example illustrates this use of a batch file.

In the following example, the batch file ASM BAT contains the command sequence
that invokes the assembler and BND386 for two modules. Any assembler source file
with the extension ASMcan be passed as a parameter to ASM BAT. Each percent sign
and its accompanying digit in the batch file is replaced with the parameters specified
on the command line that invokes the batch file. For instance:

ASM386 %1. ASM
ASM386 %2. ASM
BND386 %d. OBJ, 2. OBJ

Invoke the batch file by typing the name of the batch file without the BAT extension,
followed by the names of the source files to be trand ated, without the ASMsource file
extension, asfollows:

C>ASM PROGL PROG2

ASM 386 Macro Assembler Operating Instructions Chapter 2 21

ASM BAT invokes the assembler to assemble PROGL. ASMand PROG2. ASMand passes
the resulting files PROGL. OBJ and PROZ2. OBJ to BND386. BND386 then links the
two files and, by default, produces one executable file named PROGL.

Using Batch Commands

In addition to program invocation commands, batch files can contain DOS batch
commands (or subcommands) such as FOR, | F, and GOTO. Such commands enable
you to write a batch file that executes programs conditionally or repeatedly.

See also: Batch file commands, in your DOS manual

DOS Command Files

22

Under DOS version 2.0 or later, it is possible to invoke the DOS command-line
interpreter program, COVMAND. COM with input that is redirected from afile (called a
command file). Thisfile can contain DOS commands and invocation commands for
programs such as the assembler. A command file must contain the DOS EXI T
command.

For example, assume you created a command file named MAKEPROG. CVD that
contained the following information:

ASMB86 MAI N. ASM

ASMB86 | O. ASM

PLM386 UTI L. PLM

BND386 MAIN. CBJ, 1 O OBJ, UTI L. CBJ
EXIT

Y ou can redirect the commands in this file to COMMAND. COMby entering the
following:

C>COVWAND <MAKEPROG. CMVD
COVMAND. COMthen invokes all commands listed in the file MAKEPROG. C\VD.

The following considerations apply when invoking COMVAND. COMwith input that is
redirected from a command file:

» Command files can only contain fixed sequences of commands; you cannot pass
parameters to COMVAND. COM

e Command files cannot support conditional DOS batch commands such as| F and
GOTC;, commands are always executed sequentially.

Chapter 2 Using the Assembler

e Command files can be nested by reinvoking COVWAND. COMfrom the primary
command file with input redirected from a secondary command file. The
secondary command file must contain an EXI T command asitsfinal line. When
the EXI T command is executed, control returns to the point in the primary file
immediately following the point from which the secondary file was invoked.

Command files, unlike DOS batch files, can contain continuation lines. For
example, the following is avalid command file:

BND386 FI LEL. OBJ, FI LE2. OBJ, FI LE3. OBJ, &
NOTYPE QJ(PROGL. OBJ)
EXIT

The ampersand is the line continuation character.

e Output from acommand file may be redirected to another file in order to obtain
acomplete log of all console output created during the command file's execution,
including the invocation line for each program executed in the command file.

For example, the following command invokes the command file MAKEPROG. CVD
and creates alog file named MAKEPROG. LOG.

CCOMVAND <MAKEPROG. CVD>MAKEPROG. LOG

Redirection of Command Input to Batch Files

DOS batch files can contain multiple invocation lines, but each invocation line must
fit onasingleline. No line continuation characters (such as the ampersand) are
allowed within batch files. To process continuation lines in batch files, you must
redirect the input from afile that contains continuation lines to a batch file. The
following example shows how to do this.

In this example, two files are created: the batch file LI NKBI G. BAT and
LI NKBI G. CON, which contains continuation lines. LI NKBI G. CONisredirected to
LI NKBI G. BAT upon execution.

LI NKBI G. BAT contains the line:
BND386 MODULELl. OBJ, MODULE2. OBJ <LI NKBI G CON
LI NKBI G. CON contains the continuation line:
MODULES3. OBJ, MODULE4. OBJ FASTLOAD NODEBUG NOEP & NOPR NOTYPE

When LI NKBI G BAT is executed, BND386 is invoked, linking the four modules with
the specified set of BND386 controls.

ASM 386 Macro Assembler Operating Instructions Chapter 2 23

24

The samplefile, LI NKBI G. CON could also be redirected to a batch file that contains
multiple invocation lines, as long as this batch file contains no continuation lines. For
example, the batch file that follows, GENBI G. BAT, contains several invocation lines:

ASM386
ASM386
ASM386
ASM386
BND386

MODULE1. ASM
MODULE2. ASM
MODULE3. ASM
MODULE4. ASM
MODULEL. OBJ, MODULE2. CBJ, & <LI NKBI G CON

At execution, al of the modulesin GENBI G. BAT are assembled and then linked with
the set of BND386 controls specified in LI NKBI G. CON.

Chapter 2

Using the Assembler

Assembler Control Reference

This chapter contains a detailed description of each assembler control, listed in
alphabetical order. Each description contains the syntax, default value, type (primary
or general), abbreviation, and an explanation of its usage. Syntax descriptions
include a command-line form and a source-file form. In many cases, the same syntax
is used for both forms.

Certain controls override others, causing them to be ignored by the assembler. For
example, if the NOPRI NT control isin effect, the assembler ignores a SYMBOLS
control because it cannot create a symbol tableif it does not create a print file. Each
control description explains the overrides for the contral, if any.

See also: Command-line syntax, Chapter 2

ASM 386 Macro Assembler Operating Instructions Chapter 3 25

DATE

DATE

Syntax
Command Line DATE(dat e)
SourceFile DATE(dat e)
Abbreviation DA

Default
System time

Type
Primary

Discussion

The DATE control is supplied for compatibility with ASM86. The control is
processed but the date parameter isignored. The date that appearsin the print fileis
obtained through a call to the operating system.

26 Chapter 3 Assembler Control Reference

DEBUG

DEBUG
Syntax
Command Line DEBUG
NODEBUG
Source File DEBUG
NODEBUG
Abbreviation DB
NCDB
Default
NODEBUG
Type
Primary
Discussion

DEBUG directs the assembler to include local symbol information for variables and
labels in the object file for use in symbolic debugging. In addition, with the DEBUG
control in effect, the assembler includes LI NES and SRCLI NES information for
debugger support. NODEBUG directs the assembler to omit debugging information
from the object file.

Depending on the contents of your source file, DEBUG can significantly increase the
size of the object file produced.

The NOOBJECT control overrides the DEBUG and NODEBUG controls.

In ASM386 V4.0, the DEBUG primary control generates debug information in the
object module necessary to support source-level display by debuggers.

If the source level debug support is not desired, the size of the loadable object file
may be reduced by specifying the default NODEBUG control.

If symbolic debug information is desired without source level debug support, the
SRCLI NES and LI NES debug information may be purged from aloadable object
module using MAP386.

See also: MAP386 and the OBJECTCONTROLS option, Intel386 Family Utilities
User's Guide

ASM 386 Macro Assembler Operating Instructions Chapter 3 27

EJECT

EJECT

Syntax
SourceFile EJECT
Abbreviation EJ

Type
Generd

Discussion

EJECT directs the assembler to create a new page in the source listing, beginning
with the next source line. Additional EJECT controls on asingle control line are
ignored. The EJECT control is not allowed on the command line.

Thefollowing isalist of interactions between EJECT and other assembler controls:

» |f EJECT appearsin aline suppressed by an earlier NOLI ST control, a new page
begins when the listing is started again by the appearance of LI ST.

e |f the NOPRI NT control isin effect, EJECT isignored.
* The NOPAG NG control overridesany EJECT controls.

28 Chapter 3 Assembler Control Reference

ERRORPRINT

ERRORPRINT
Syntax
Command Line ERRORPRI NT[(fi | e-spec)]
NOERRORPRI NT
SourceFile ERRORPRI NT[(fi | e-spec)]
NOERRORPRI NT
Abbreviation EP
NCEP
Default
NOERRORPRI NT
Type
Primary
Discussion

ERRORPRI NT directs the assembler to create a file containing only error messages
and their corresponding source lines or to print such a summary on the terminal
screen. Each line and error message summary has the same form asin the full listing.
For example:

systemid Intel 386

MACRO ASSEMBLER x.y ASSEMBLY OF MODULE MYPROG

OBJECT MODULE PLACED | N MYPROG. OBJ

ASSEMBLER | NVOKED BY: ASM386 ERRORPRI NT MYPROG ERR MYPROG ASM
LoC 0oBJ LINE SOURCE

------- 31 DATA ENDS

*** WARNI NG #354 I N 31, SEGVENT CONTENTS DO NOT AGREE W TH ACCESS- TYPE

If you do not supply afile specification, the assembler prints an error summary
similar to the above on the terminal screen, followed by the standard assembler sign-

off message.
See also: Error message formats, Appendix A

NOERRORPRI NT directs the assembler not to create the error summary file.

ERRORPRI NT and NOPRI NT can be specified for the same assembly because the
assembler can generate an errorprint file without generating a print file.

ASM 386 Macro Assembler Operating Instructions Chapter 3 29

ERRORPRINT

Place quotation marks around errorprint file names that are specified in the source
file if they contain spaces or any of the following characters:

() =#!D $ %\ ~+- & <>[1];
For example:
$ERRORPRI NT(" ERROR(s) . QUT")

Errorprint files that do not contain any of the characters above should appear as
follows:

$ERRORPRI NT(ERROR. QUT)

30 Chapter 3 Assembler Control Reference

GEN/NOGEN/GENONLY

GEN/NOGEN/GENONLY
Syntax
Command Line GEN
NOGEN
GENONLY
SourceFile GEN
NOGEN
GENONLY
Abbreviation GE
NOGE
GO
Default
GENONLY
Type
General
Discussion

The GEN, GENONLY, and NOGEN control s determine the mode of listing assembly
source text, macro calls, and macro expansion text in the print file, as follows:

e GENproduces alisting that contains all source text, all macro calls, al macro
expansions (i.e., the macro text), and object code.

e GENONLY produces alisting that contains source file nonmacro text and the final
resulting text of all macros called, but omits the actual macro calls. Object code
generated inside any macro callsislisted.

* NOGEN produces alisting that contains only the source file text (macro
definitions and calls), not the macro expansions. Object code, if any, islisted
after the line containing the macro call.

GEN produces the most complete and continuous source listing because it provides a
trace of the entire macro call and expansion process. Expansions appear on the line
below the call, indented to the same column asthe call. (Horizontal tabsin macro
calls or expansion lines are not expanded.)

ASM 386 Macro Assembler Operating Instructions Chapter 3 31

GEN/NOGEN/GENONLY

This makes the GEN listing useful for debugging macros. However, GEN may produce
an inconveniently large print file for programs that contain many macro calls.

Both the NOVACRO and NOPRI NT controls override the GEN, GENONLY, and NOGEN
controls. When any combination of the three controls-- GEN, NOGEN, and GENONLY
-- appears on the same control line within the source file, the last setting takes effect.

Example

Only one of the GEN, GENONLY, or NOGEN controls can bein effect at onetime in the
source listing, although you can specify the controls at selected points to change the

listing mode. The following example shows how the macro MAC is called in each of

the three modes:

* InGENmode, line 8, the listing includes the macro call and its expansion.

e InGENONLY mode, line 17, the call to MAC (%vAC(4, 5, 6)) is suppressed, but
the resultant text islisted.

* In NOGEN mode, line 22, only the call to MAC islisted. The expansion linesare
SKkipped.

32 Chapter 3 Assembler Control Reference

GEN/NOGEN/GENONLY

LCC

00000000

00000002

00000004

00000006
00000008
0000000A

0000000C
0000000E
00000010

aBJ

0100

0200

0300

0400
0500
0600

0700
0800
0900

LI NE

[EnY

© O ~NO UL~ WNDN

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25

+1

+1
+2
+1
+2
+1
+2
+1
+1
+2
+2
+2
+1

SOURCE
NAVE XXX
$NOGEN
% DEFI NE(MAC(A, B, C)) (DW %A
DW 98
DW %C
)
DATA SEGVENT RW
$GEN
%WAC (1,2, 3)
DW %A
1
DW 98
2
DW %C
3

$GENONLY
DW 4
DW 5
DW 6

$NOGEN
%WAC (7,8, 9)

DATA ENDS
END

Figure 3-1. SampleListingfor GEN/NOGEN/GENONLY

ASM 386 Macro Assembler Operating Instructions Chapter 3

33

INCLUDE

INCLUDE

Syntax
Command Line I NCLUDE(fi | e- spec)
SourceFile I NCLUDE(fi | e- spec)
Abbreviation IC

Type

General

Discussion

| NCLUDE directs the assembler to insert the contents of afileinto the sourcefile. If
I NCLUDE appearsin the invocation line, the contents of the include file are inserted
before the contents of the main sourcefile. If | NCLUDE appearsin a control line,
input from the include file begins following the control line and continues until the
end of the include fileisreached. At that time, input resumes from the file that was
being processed when the | NCLUDE control was encountered.

I NCLUDE need not be the last command in a control line; however, it does not take
effect until the end of the contral lineisreached. The following restrictions govern
the use of | NCLUDE:

e Only one | NCLUDE control is allowed per line.

* No more than 64 combinations of macro calls and | NCLUDE controls can bein
effect at the same time in any one module.

* The maximum nesting level for included filesis nine.
e Anincluded file can contain lines specifying primary controls.

Included files specified in the source file must be enclosed within quotation marks if
they contain spaces or any of the following characters:

() =#1 S %\ ~+- & <>]
For example:

$I NCLUDE(" O ude(s) . | NC")
$I NCLUDE(" Lot #4. | nc")

34 Chapter 3 Assembler Control Reference

LIST

LIST
Syntax
Command Line LI ST
NOLI ST
Source File LI ST
NOLI ST
Abbreviation LI
NOLI
Default
LI ST
Type
General
Discussion

LI ST directs the assembler to resume the source listing in the print file with the next
source line read. NOLI ST suppresses the listing, beginning with the next line read,
until the next occurrence (if any) of LI ST. Specifying NOLI ST at invocation
suppresses the listing, beginning with the first line.

Thefollowing isalist of interactions between LI ST/ NOLI ST and other assembler
controls:

NOPRI NT, XREF, and SYMBOLS override the LI ST/ NOLI ST controls.

PRI NT does not override NOLI ST. If both NOLI ST and PRI NT are in effect, only
the assembler messages for source lines containing errors appear in the print file.
Otherwise, the file contains only a header (assuming SYMBOLS or XREF isnot in
effect).

If an EJECT control appearsin aline suppressed by NOLI ST, a new page begins
when the listing is started again by LI ST.

NOLI ST affects the setting of the PAGELENGTH control only if NOLI ST istill in
effect when the end of the source listing is reached. 1f NOLI ST suspendsthe
listing in the middle of a page and a subsequent L1 ST begins the listing again,
source lines are added to the page until it reaches the specified length.

ASM 386 Macro Assembler Operating Instructions Chapter 3 35

MACRO

MACRO

Syntax

Command Line

Source File

Abbreviation
Default

MACRO

Type
Primary

Discussion

MACRO
NOVACRO contr ol

MACRJ (par anet er)]
NOVACRO

MR
NOVR

The MACRO control directs the assembler to recognize and process macros.

Macros can appear anywhere in the source file, including control lines. Refer to
Chapter 2 for an example of a macro call within a control line. In effect, any
occurrence of the macro metacharacter (% by default) in the sourceis considered a
macro call. The parameter has no effect for the assembler but is allowed for
compatibility with existing ASM 286 files.

Macros can also appear in the invocation line. Usethe %racr o- st ri ng statement.

See also: The %racr o- st ri ng statement, Chapter 2
macro processing language, ASM386 Assembly Language Reference

NOMACRO directs the assembler to scan macros only as normal assembly language
text, which usually causes assembler errors. It may speed up the assembly if no
macros are used and the NOMACRO control isin effect.

NOMACRO overrides the GEN GENONLY/ NOGEN controls.

36 Chapter 3

Assembler Control Reference

MOD386/MOD376/MOD486

MOD386/MOD376/MOD486
Syntax
Command Line MOD386
MOD376
MOD486
SourceFile MOD386
MOD376
MOD486
Default
MOD386
Type
Primary
Discussion

The MOD386, MOD376, and MOD486 controls direct the assembler to ensure that the
input file meets the requirements of the Intel 386, 376, and Intel486 processors,
respectively. By default, the assembler accepts assembly language source code that
executes on the Intel 386 processor.

The Intel486 or Pentium processor architecture is fully compatible with the Intel 386
processor architecture. All Intel386 processor modes are available to the Intel 486 or
Pentium processor. The Intel486 processor also has an expanded instruction set and
additional registers which are supported by the assembler with the MOD486 control
specified.

The MOD486 primary control provides the following support for Intel486
microprocessor software development using ASM 386 V4.0:

» Enablesthetest registers TR3, TR4, and TR5 which are defined on the Intel486
Mi Croprocessor.

« Enablesthe forms of the MOV instruction to load and store the TR3, TR4, and
TR5 registers.

» Generates machine code for al forms of the Intel486 microprocessor
instructions.

See also: Differences between Intel 386 and Intel 486 processors, ASM386
Assembly Language Reference

ASM 386 Macro Assembler Operating Instructions Chapter 3 37

MOD386/MOD376/MOD486

38

The 376 processor architecture is a subset of the Intel 386 processor architecture: the
32-hit protected mode is available, but real address mode, virtual 8086 mode, and
paging are not available. The segmentation-based memory management and
protection features are available on the 376 processor. 286 processor call, interrupt,
or trap gates or 286 processor TSSs are not supported on the 376 processor.

See also: Differences between the 376 and Intel 386 processors, ASVI386
Assembly Language Reference

When assembling for the 376 processor, make sure the input file contains only USE32
code or stack segments. USE16 code segments are not executable on the 376
processor. The assembler issues an error message if the USE16 segment directiveis
in effect for acode or a stack segment; USE16 data segments may be included in the
input file. An error isalso issued if the USE16 keyword isused in an EXTRN directive
of type NEAR or FAR.

Because the 376 processor has a 24-bit address bus, a segment must be no larger than
16 megabytes. The assembler issues a warning when you specify MOD376 and the
source file contains a segment exceeding 16 megabytes.

See also: Errors and warnings, Appendix A

Chapter 3 Assembler Control Reference

N387/N287

N387/N287
Syntax
Command Line N387
N287
Source File N387
N287
Default
N387
Type
Primary
Discussion

By default, the assembler generates code for Intel 387 floating-point coprocessor
instructions. The Intel 387 floating-point coprocessor includes all the instructions for
the Intel 287 plus FSI NCGS, FSI N, FCOS, FUCOVPP, FUCOM, FUCOWP, and FPREML.

N287 directs the assembler to detect the instructions not supported on the Intel287
and to issue an error message for each line that contains an instruction unique to the
Intel 387 floating-point coprocessor.

See also: Instructions for the Intel 387 floating-point coprocessor, ASM386
Assembly Language Reference

ASM 386 Macro Assembler Operating Instructions Chapter 3 39

OBJECT

OBJECT
Syntax
Command Line OBJECT[(fil e-spec)]
NOOBJECT
SourceFile OBJECT[(fil e-spec)]
NOOBJECT
Abbreviation Ql
NOQJ
Default
NOOBJECT
Type
Primary
Discussion

OBJECT directs the assembler to create an object file during assembly of the specified
sourcefile. If severe errors are found, the object file is not produced.

See also: Errorsthat affect the creation of an object file, Appendix A

If you do not specify NOOBJECT or you specify OBJECT without the object-file
parameter, the assembler creates an object file with the same file name as the source
file and the extension OBJ.

NOOBJECT directs the assembler not to create an object file.
NOOBJ ECT overrides the DEBUG NODEBUG and TYPE/ NOTYPE controls.

Object file names specified in the source file must be enclosed within quotation
marks if they contain spaces or any of the following characters:

() =#!D $ %\ ~+-&[<>[1];
For example:

$OBJECT(" TOP(s) . OBJ")

40 Chapter 3 Assembler Control Reference

PAGELENGTH

PAGELENGTH

Syntax
Command Line PAGELENGTH(| engt h)
SourceFile PAGELENGTH(| engt h)
Abbreviation PL

Default
PAGELENGTH(60)

Type
Primary

Discussion

PAGELENGTH directs the assembl er to create print file pages of a specified length.
The value of length may be an unsigned decimal integer from 10 to 65535
representing the number of lines per page of the print file. The total number of lines
per page includes any header lines on the page. The minimum page length is 10
lines.

PAGELENGTH isignored if the NOPRI NT or NOPAG NG control isin effect.

NOLI ST affects the setting of PAGELENGTH only if NOLI ST isin effect when the end
of the source listing is reached. 1f NOLI ST suspends the listing in the middle of a
page and a subsequent LI ST begins the listing again, source lines are added to that
page until it reaches the specified length.

ASM 386 Macro Assembler Operating Instructions Chapter 3 41

PAGEWIDTH

PAGEWIDTH

Syntax

Command Line
SourceFile

Abbreviation

Default

Type

PAGEW DTH(120)

Primary

Discussion

42

PAGEW DTH(wi dt h)
PAGEW DTH(wi dt h)

PAGEW DTH directs the assembler to create print and errorprint file pages of a
specified width. The value of wi dt h may be an unsigned decimal integer that
specifies the number of characters on aline of the print and errorprint files.

The minimum page width is 60 characters; the maximum is 132.

The NOPRI NT control overrides PAGEW DTH.

Chapter 3

Assembler Control Reference

PAGING

PAGING
Syntax
Command Line PAG NG
NOPAG NG
Source File PAG NG
NOPAG NG
Abbreviation PI
NOPI
Default
PAG NG
Type
Primary
Discussion

PAG NG directs the assembler to format the print file into pages, as follows:
» Every pageisinitiated with aform feed character.

» Each page begins with a header containing the assembler name, title, date, and
page number.

e Thesymboal tablelisting, if present, begins on a new page, following the source
listing.

The length of the page depends on the setting of the PAGELENGTH control.

NOPAG NG prevents the print file from being paged. Instead, a single header is
printed at the beginning of the file and the listing is continuous until the symbol table
(if any), which is separated from the source listing by four blank lines.

Thefollowing isalist of interactions between PAG NG NOPAG NG and other
assembler controls:

* NOPRI NT overrides PAG NG and NOPAG NG.
e NOPAG NGoverrides PAGELENGTH.
* NOPAG NGoverrides EJECT.

ASM 386 Macro Assembler Operating Instructions Chapter 3 43

PRINT

PRINT
Syntax
Command Line PRI NT[(fil e-spec)]
NOPRI NT
SourceFile PRI NT[(fil e-spec)]
NOPRI NT
Abbreviation PR
NOPR

Default
PRI NT source-file.LST

Type
Primary

Discussion

PRI NT directs the assembler to create a source listing during assembly and write it to
thelisting file or to the screen. If you do not specify NOPRI NT or you specify PRI NT
without the file-spec parameter, the source listing appearsin afile with the sasmefile
specification as the source file with the LST extension.

NOPRI NT directs the assembler not to create a source listing.

NOPRI NT overrides al controls affecting the print file (EJECT, SYMBOLS, etc.), but
does not affect controls related to the object file (DEBUG, TYPE, etc.).

If NOLI ST is used while PRI NT isin effect, the listing contains only the header, error
messages, and those source lines containing errors. Correct source lines do not
appear unless the listing is begun again by the LI ST control.

Print files specified in the source file must be enclosed within quotation characters if
they contain spaces or any of the following characters:
() =#HD S % ~+ - &) <>]

For example:

$PRI NT(" New(s) . LST")

44 Chapter 3 Assembler Control Reference

SAVE/RESTORE

SAVE/RESTORE
Syntax
SourceFile SAVE
RESTORE
Abbreviation SA
RS
Type
Generd
Discussion

SAVE directs the assembler to save the current settings of the LI ST/ NOLI ST and
GEN GENONLY/ NOGEN controls on a stack. The current setting is the setting in effect
at the beginning of the SAVE control line. RESTORE specifies that the most recently
saved settings on the stack become the current settings of those controls. SAVE and
RESTORE are not allowed on the command line. The maximum nesting level of
SAVESis eight.

The SAVE and RESTORE controls do not function correctly when used under the
following conditions:

» Fewer than two lines exist between the SAVE followed by RESTORE.
e Thecontrol lines containing SAVE/RESTORE are in an includefile.

e SAVE or RESTORE is combined with either the GEN or NOGEN control.

Example

SAVE and RESTORE can be used to regulate the listing of macros. For example, you
may want a listing that contains both macro calls and their results. Thislisting would
be comparable to a combination of the results of the NOGEN and GEN controls. The
cal lineislisted in NOGEN mode; both the call line and the expansion are listed in
GEN mode. The following example shows the use of SAVE/ RESTORE to regulate the
listing of amacro MAC for two calls.

ASM 386 Macro Assembler Operating Instructions Chapter 3 45

SAVE/RESTORE

LCC

00000000
00000004

00000008

0000000C

ASSEMBLY

46

aBJ LI NE
1
2

© 0o ~NOO O~ w

0400 10
11
12
13
14
15

16
66B84000
66B85000

17

18
19
66B8700C
20
21
66BB8000
22
23
24

25
26

+1
+1

SCQURCE
NAME SAVE_TEST

$GEN

$SAVE ; SAVES GEN S SETTI NG ON STACK

% DEFI NE(MAC(A, B))(

MOV AX, %A

MOV BX, 9B

)

DATA SEGVENT RW

DI DW4

DATA ENDS

CODE SEGMENT EO

ASSUVE DS: DATA

$NOGEN

 NOGEN SETTING IS | N EFFECT
FOR NEXT MACRO CALL

9AC (40H, 50H)

$RESTORE ; GEN SETTI NG FROM STACK
I'S IN EFFECT FOR NEXT CALL
9%AC (70H, 80H)

MOV AX, YA
70H
MOV BX, 98

80H

CCDE ENDS
END

COVPLETE, NO WARNI NGS, NO ERRORS
Figure 3-2. SamplelListing for SAVE/RESTORE

Chapter 3

Assembler Control Reference

SYMBOLS

SYMBOLS
Syntax
Command Line SYMBOLS
NOSYMBOLS
Source File SYMBOLS
NOSYMBOLS
Abbreviation SB
NOSB
Default
NOSYMBOLS
Type
Primary
Discussion

SYMBOLS directs the assembler to append a symbol table to the source listing in the
print file. The symbol tableis an alphabetical list of all assembler identifiers defined
within the source, with their attributes. Assembler identifiers do not include macro
identifiers.

See also: Symbol table, Chapter 4
NOSYMBOLS directs the assembler to suppress the symbol table.
NOPRI NT overrides SYMBOLS; XREF overrides NOSYMBOLS.

ASM 386 Macro Assembler Operating Instructions Chapter 3 47

TITLE

TITLE

Syntax
Command Line TITLE(tit] e)
SourceFile TITLE(tit] e)
Abbreviation TT

Default

TI TLE(mrodul e- nane)

Type

General (sourcefile)
Primary (command line)

Discussion

TI TLE directs the assembler to place a character string in the header on the first line
of each page of the print file.

In the command line, TI TLE functions as a primary control and sets the title for each
page of the file. When specified in acontrol line, TI TLE functions as a general
control. The specified title appears on the page where the TI TLE control line occurs
and on all subsequent pages until changed by another TI TLE control.

TI TLE does not cause a new page to start. The EJECT control or normal paging
determine the start of a new page.

The maximum title length is 60 printable ASCII characters. If the title does not fit
within the specified page width, the assembler truncates the title on the right. No
error message is generated for titles up to 80 characters. Titles over 80 characters
long generate incorrect error messages:

ERROR #520: BAD CONTROL PARAMETER
ERROR #612: EXPECTED A RI GHT PARENTHESI S

Titles specified in control lines must be enclosed within quotation marksif they
contain spaces or any of the following special characters:

() =#1 8 %N ~+ - & <>]

48 Chapter 3 Assembler Control Reference

TITLE

For example:
$TI TLE(" Section 2")

If the title itself contains a quotation character or apostrophe, enclose the title in the
other type of quote mark. For example:

$TI TLE(' Nancy"s')
$TI TLE(" Nancy' s")

In the absence of any TI TLE controls, the assembler uses the module name specified
with the NAME directive as the title.

NOPRI NT overrides TI TLE. The NOPAG NG control overrides TI TLE controls that
appear after the primary control lines, because no new pages are created.

Use of the Tl TLE control on the command line overrides use of the Tl TLE control on
the primary control line in the source file.

ASM 386 Macro Assembler Operating Instructions Chapter 3 49

TYPE

TYPE
Syntax
Command Line TYPE
NOTYPE
Source File TYPE
NOTYPE
Abbreviation TY
NOTY
Default
NOTYPE

Primary

Discussion

TYPE directs the assembler to include type information about the PUBLI C variables
and labels in the symbol records of the object module. NOTYPE directs the assembler
to omit type information from the object module. The NOOBJECT control overrides
TYPE.

Typeinformation for variables declared PUBLI Cis used primarily to assist debuggers
in displaying symbols. Although the type produced for a variable may not exactly
correspond to the intended contents of that memory location, the type is sufficient to
specify the number of bytesto be displayed for the variable. Also, in the case of an
array or structure, the format and size associated with the symbol are included.

The type information produced by the assembler can also be used for inter-module
type checking by BND386, the binder for processor modules. BND386 compares the
use of variablesin different modules to ensure that every use of avariableis
consistent with itstype. However, the utility of TYPE islimited because the
assembler does not produce type information for external symbols, nor does it
support perfect type matching with high-level languages.

See also: Assembler data types, ASM386 Assembly Language Reference

Chapter 3 Assembler Control Reference

USE32/USE16

USE32/USE16
Syntax
Command Line USE32
USE16
Source File USE32
USE16
Abbreviation u32
Ul6
Default
USE32
Type
Primary
Discussion

USE16 directs the assembler to generate 16-bit addresses and offsets, as well asthe
appropriate operand sizes and address mode override prefixes. In this mode, which is
compatible with ASM 286, the assembler supports a maximum segment size of 64K.
If USE16 isin effect, the assembler can trandate ASM 286 assembly language
modules without source modification.

ASM386 performs 32-bit arithmetic even when you specify USE16. ASM 386 does
not support register expressions that use scale with USE16.

USE32, the default, directs the assembler to generate 32-bit addresses and offsets, as
well as the appropriate operand sizes and address mode override prefixes. In this
context, the assembler supports a maximum segment size of 4 gigabytes.

The assembly language includes the USE16 and USE32 segment USE attributes that
perform the same functions as the USE16 and USE32 controls, respectively. USE32 is
the defaullt.

ASM 386 Macro Assembler Operating Instructions Chapter 3 51

USE32/USE16

The following rules also apply:

e Only one member of the control pair USE32 and USE16 can be specified in the
invocation line, that is, if USEL6 is specified USE32 cannot be specified.

* |If both USE16 and USE32 are specified in source control lines, the last one
specified isin effect.

See also: Segment USE attributes, ASMI386 Assembly Language Reference

52 Chapter 3 Assembler Control Reference

WORKFILES

WORKFILES

Syntax
Command Line VORKFI LES(dir1[, dir2])
SourceFile VORKFI LES(dir1[, dir2])
Abbreviation WF

Default

WWORKFI LES(: WORK: , : WORK:)

Type
Primary

Discussion

WORKFI LES specifieslogical names for devices or directories for storage of
assembler-created temporary files. These intermediate files are deleted at the end of
assembly. A single name may be specified as the parameter; thisis equivalent to
specifying that name twice.

Thisis provided for compatibility with earlier assemblers.
See also: Work Files, Chapter 2

ASM 386 Macro Assembler Operating Instructions Chapter 3 53

XREF

XREF

Syntax

Command Line
Source File

Abbreviation

Default
NOXREF

Type
Primary

Discussion

XREF
NOXREF

XREF
NOXREF

XR
NOXR

XREF directs the assembler to append a symbol table listing, including cross-
reference line numbers, to the source listing in the print file. Thistable hasthe same
format as the table produced by the SYMBOLS control, with an additional field entitled
XREFS. The XREFS field contains the numbers of the linesin which a symbol is
defined, referenced, or purged.

See also: Symbol table, Chapter 4

NOXREF directs the assembler to omit the cross-referenced field from the print file.

XREF overrides the SYMBOLS and NOSYMBOLS controls. NOPRI NT overrides XREF.

54 Chapter 3

Assembler Control Reference

The Listing (Print File)

The listing, sometimes referred to as the print file, providesinformation on the
assembly of amodule, such as alisting of the source code and object code, and any
errors or warnings produced by the assembler. This chapter describes the fields of
information in the print file and the file's optional symbol table listing.

Figure 4-1isasamplelisting for an assembler module named MYPROG, which
contains errors to illustrate the assembler error reporting. The four main fields of
information in the print file are LOC (location counter), OBJ (object code), LI NE (line
number), and SOURCE (source text). Other kinds of information may appear in a print
file, depending on the nature of the source program. In general, information
generated by the assembler appears to the left of the line number and source code
appears to the right of the line number.

The Default Print File

If you do not specify any assembler controls that govern the format of the print file,
the file has the following characteristics:

» Thefile specification is the source file's name with LST extension.

» Thefileisdivided into pages 60 lines long and 120 characters wide. The first
line of each page contains the assembler name, the title (the module name
specified with the NAVE directive), the time and date, and the page number.

For macros, the file contains the source file's text and the final resulting text of all
macros, but not the actual macro calls. All object code generated inside macro calls
islisted.

ASM 386 Macro Assembler Operating Instructions Chapter 4 55

I nt el 386 MACRO ASSEMBLER MYPROG tine mmi dd/ yy PAGE 1

systemid Intel 386 MACRO ASSEMBLER Vx.y ASSEMBLY OF MODULE MYPROG
OBJECT MODULE PLACED I N MYPROG OBJ
ASSEMBLER | NVOCKED BY: ASMB86 SYMBOLS PAGEW DTH 73 MYPROG ASM

LCC aBJ LI NE SOURCE
1 NAME MYPROG
2
REG 3 COUNT EQU CX
- 0800 4 I VAL EQU - 800H
0100 5 AR _SI ZE EQU 100H
6 R17 RECORD SI GN: 1, LOW: 7
7
8 EXTRN SYSTEM FAR
9 PUBLIC INT
------- 10 FLOAT STRUC
0000000 11 EXPONENT DB 0O
0000001 12 MANTI SSA DD 0O
------- 13 FLOAT ENDS
14
C MACRO 15 CODEMACRO D7 VALUE: D
16 R17 <0, VALUE>
17 ENDM
18
------- 19 STSEG STACKSEG 100
20
------- 21 DATA SEGVENT RW USE32
00000000 03 22 I NI TI AL FLOAT <3, 5>
00000001 05000000
00000005 03 23 TOP DB 3, 10
00000006 OA
24 WOVBAT
* k% AN

*** ERROR #1 I N 24, SYNTAX ERROR
Figure4-1. SamplePrint File Page

56 Chapter 4 ThelListing (Print File)

00000007 414243
0000000A (10

0100

0300

4400

)
00000046 05000000
0000004A 46000000
0000004E 07
0000004F ----

AAAAAAAA (256
2722222727

AAAAAABA: []
[EBX+10]

00000000 ----

00000002
00000002 66B9F600

25
26

27
28
29
30
31
32
33
34
35

36
37
38

39
40
41
42
43
44
45
46

STRNG

| TOP
11 TOP

ES SEL
DATA

EXTRA

ARRAY

EXTRA

AR1BX

DS_SEL

INIT

DB ' ABC
DW 10 DUP (1, 3, 44H)

DW TOP
DD I TOP
D7 O7H
DW EXTRA
ENDS

SEGVENT RW USE32
ORG 0AAAAAAAAH

DD AR S| ZE DUP (?)
ENDS

EQU ES: ARRAY1

SEGVENT ER
ASSUME DS: DATA

Figure4-1. SamplePrint File Page (continued)

ASM 386 Macro Assembler Operating Instructions

DwW DATA

PROC FAR

MOV COUNT, AR _SI ZE -
Chapter 4

10

57

00000006 6689CB 47 MOV BX, COUNT

00000009 48 I NI TLOOP:
00000009 26C783B4AAAAAACOOFSFF
R 49 MOV AR1BX, | VAL FF
00000014 E2F3 50 LOCOP | NI TLOOP
00000016 CB 51 RET
00000017 52 INIT ENDP
53
00000017 2E8E1DO0000000 R 54 START: MOV DS, DS_SEL
0000001E 8E054F000000 R 55 MOV ES, ES_SEL
00000024 9A02000000- - - - R 56 CALL INIT
0000002B 9A00000000- - - - E 57 CALL SYSTEM
-------- 58 CODE ENDS
59
---- 60 CODE_16 SEGVENT EO
USE16
0000 B8---- R 61 MOV AX, EXTRA
0003 8ECO 62 MOV ES, AX

0005 666726C7843BAAAAAAAA
R 63 MV ES: ARRAY1[EBX][EDI],
OFFFFFFFFH FFFFFFFF
64 CODE_16 ENDS
65
66 +1 $I NCLUDE
(WVOVBAT. | NO)
=1 67 WOMVBAT
*** ERROR #1 | N (WOVBAT.INC, LINE 67), SYNTAX ERROR
68 END START, DS: DATA, SS: STSEG
69

Figure4-1. SamplePrint File Page (continued)

58 Chapter 4 ThelListing (Print File)

Print File Headers

Thefirst line of each page of the print file contains the assembler name, thetitle
(either the module name or the name you specified with the TI TLE control), the time
and date determined by the operating system, and the page number. The first page
contains an additional header in the following form:

systemid | ntel 386 MACRO ASSEMBLER Vx.y

ASSEMBLY OF MODULE nodul e- nane

OBJECT MODULE PLACED IN object-file

ASSEMBLER | NVOKED BY: ASMB86 [controls] source-file

If no object fileisrequested or if errors prevent an object module from being created,
the second line of the header contains a message NO OBJECT FI LE REQUESTED or
NO OBJECT MODULE CREATED. Thelast header line lists the controls used in the
assembler invocation.

See also: Command Syntax, Chapter 2

ASM 386 Macro Assembler Operating Instructions Chapter 4 59

Location Counter (LOC)

The program location counters track the current offset within the segment being
assembled. The LOCfield contains the location counter. For code in USE32
segments, the location counter is an eight-digit hexadecimal number. For codein
USE16 segments, the upper four digits are blank and the location counter appearsin
thelast four columns.

For source lines that generate object code and for labels (LABEL or PROC), the LOC
field contains the location counter value effective at the beginning of the line.

For source lines containing the ORG directive, the LOC field contains the new value
specified by the ORG statement.

The LOCfield is blank for lines containing comments, directives, controls, macro
definitions, or record definitions. If the object code for a source statement appears on
more than one lineg, all other fields of the continued lines are blank, including the
location counter.

For record definitions, a pound sign (#) appearsin the rightmost column of the LOC
field to signal that assembly is not taking place. For example:

6 R17 RECORDSI GN: 1, LOW: 7

When a STRUC, SEGVENT, STACKSEG, or ENDS line has been coded, the LOC field
contains the notation -------- . For aUSE16 SEGVENT, the notation is----. The
notation signals a break in the flow of the location counter. For example:

________ 21 DATA SEGVENT RW USE32

Equated Symbols (EQU Directive)

Equated symbols are on the left-hand side of a statement containing the EQU
directive. Information about equated symbols appearsin the last half of the LOC field
and the first half of the OBJ field, starting in column three.

If the symbol is equated to a variable or label, this area contains the hexadecimal
offset of the symbol. Variable or label equates can have segment override and
indexing attributes. A colon (:) after the offset indicates an override attribute;
brackets ([]) indicate an indexing attribute, asin the following example;

AAAAAABA: [] 38 ARIBX EQU ES: ARRAY1 [EBX+10]

60 Chapter 4 ThelListing (Print File)

If the symbol is equated to a number, this area contains the hexadecimal value of the
number. If the symbol is equated to one of the following, the item's identifier appears

inthisarea:

Item

register
macro
codemacro
segment
external variable
record

record field
structure
structure field
instruction
keyword

Identifier
REG
MACRO

C MACRO
SEGMENT
EXTRN
RECORD
RFIELD
STRUC
SFIELD
INSTRUCTION
KEYWORD

For example, the LOC field contents for a symbol equated to aregister are shown in

thisline:

REG

3 COUNT EQU CX

Floating-point Stack Elements (ST)

A floating-point stack element isindicated by ST(i), wherei isthe numerical index
value beginning in column 3 if the element isindexed, or by ST if theindex isO.

COMM Variables and Labels

The word COWM appears in columns 3 through 6 for each line of a data definition
given the COMM attribute with the COMMstatement.

ASM 386 Macro Assembler Operating Instructions

Chapter 4 61

Object Code (OBJ)

The object code is displayed as hexadecimal starting in column 10 and isfilled as
follows:

e The maximum size of an instruction is 15 bytes, even if al five prefix bytes are
present.

» Thefield contains the notation ---- if segment selector values were assembled.

If an assembler statement spans several lines, object code produced for completed
constructs on a continued line prints with the continued line. The assembler does not
wait until a statement is completed to display al the object code.

Whenever a DUP field begins, aleft parenthesis appears in the left column of the OBJ
field, followed by the count in decimal numbers. The content bytes are left justified
on the lines that follow, ending with aright parenthesisin the leftmost column. For
example:

0000000A (10 25 DW 10 DUP (1,3, 44H
0100
0300
4400

)

For nested DUPs, the left parenthesis, number, and the right parenthesis are indented
one column for each nesting level, but the content bytes are never indented.

Relocatable or External Code (R, E)

The object code can be followed by arelocation indicator, which is the letter Rif
relocatable object code is generated on the current line, or the letter E if externa code
isgenerated. The E appears on lines containing code that is both external and
relocatable. For example:

00000019 9A02000000---- R 55 CALL INT
00000020 9A00000000---- E 56 CALL SYSTEM

Include Nesting Indicator (=)

62

An equal sign (=) followed by a number from 1 to 9 appears between the object code
and the line number for all source lines that come from include files. The number
indicates the level of nesting. An asterisk (*) appearsif the include nesting level
exceeds 9.

66 $I NCLUDE (WOVBAT. | NC)
=1 67 WOVBAT

Chapter 4 ThelListing (Print File)

Line Numbers (LINE)

The Ll NE field isfive characterslong. The line numbers begin with 1 and are
incremented for every source or macro expansion line listed.

Macro Expansion Indicator (+)

The first column following the line number field of a macro expansion line contains a
plus (+). The next two columns contain a number that indicates the nesting level of
the macro, except for expansions, in which case these two columns are blank.

=1 85 9% NC1(EXAMPLE, SI MPLE)
=1 86 +1

=1 87 +1 ;TH'S %NOUN

=1 88 +2 EXAVPLE |'S %ADJ
=1 89 +2 SI MPLE

Source Statements (SOURCE)

The source text is a copy of the source line of macro-generated text (as determined by
the setting of the GEN' NOGEN/ GENONLY contrals).

Tabsin your source are reproduced so that the source text looks the same in the
listing. If the GEN control isin effect, tabs are not expanded in lines containing
macro calls (or parts of calls) or in macro expansion lines; instead, tabs appear as
single spaces.

If a source statement exceeds the specified page width, it continues on the next line
and the continued lines contain only source text, as shown:

00000009 6626C783B4AAAAAOOFS50 | NI TLOOP: MOV ES: ARRAY1
[EBX+10] , | VAL

An error or warning message appears immediately after an erroneousline. The
message contains an error or warning number, alisting line number, a pass number
(if other than the first pass), and a brief description.

See also: Interpreting and correcting errors, Appendix A

ASM 386 Macro Assembler Operating Instructions Chapter 4 63

The Symbol Table

The DOS symbol table capacity is approximately 4500 seven-character symbols
when expanded memory and at least 568K conventional memory are available.

If the SYMBOLS or XREF control isin effect, the symbol table follows the source
listing. SYMBOLS generates the standard table; XREF generates the same table with
the addition of the numbers of each line in which a particular symbol was referenced.
The example in Figure 4-2 was generated with SYMBOLS.

The symbols are in alphabetical order using the ASCII character order, except for the
underscore (_), which comes first. Reserved names are not included unless they have
been redefined or purged.

If the PAG NG control isin effect, the symbol table begins on anew page; otherwise,
it is separated from the source listing by four blank lines. The final message of the
print file, which signals the end of assembly and shows the number of warnings and
errors, appears after the symbol table.

See also: Symbol table fields and examples, Chapter 4

64 Chapter 4 ThelListing (Print File)

I nt el 386 MACRO ASSEMBLER MYPROG ti e

SYMBCL TABLE LI STI NG

INITIAL. ...
I NI TLOCP. .

TYPE
V DWORD
V DWORD

. NUMBER

SEGVENT

. SEGVENT

REG
C MACRO
SEGVENT

.V WORD

VALUE
AAAAAABAH
AAAAAAAAH
0100H

CX

00000000H
0000004FH
00000000H

0000004AH
00000002H
00000000H
00000009H
00000046H
FFFFF800H
00000000H
00000000H

00000007H
00000017H
00000007H

00000000H
00000005H

END OF SYMBOL TABLE LI STI NG

ASSEMBLY COVPLETE, NO WARNI NGS

ASM 386 Macro Assembler Operating Instructions

m dd/yy PACE 1

ATTRI BUTES
ES: [EBX]
(256) EXTRA ES:

S| ZE=00000032H
S| ZE- 00000013H

ER USE32
EO0O USE32

DEFS=1

S| ZE=00000051H
CCDE

DATA

SFI ELD

S| ZE=AAAAAEAAH
S| ZE=00000005H
DATA

CCDE WC=0 PUBLI C
DATA

RW USE32

RW USE32
#F| ELDS=2

DATA

W DTH=7
SFI ELD
S| ZE=1 W DTH=8 DEFAULT=00H
W DTH=1

(3) DATA

SI ZE=00000064H RW PUBLI C USE32
EXTRN

(2) DATA

- - UNDEFI NED- -

- - UNDEFI NED- -

2 ERRORS

Figure 4-2. Sample Symbol Table

Chapter 4 65

Symbol Table Fields

The fields of the symbol table are NAME, TYPE, VALUE, ATTRI BUTES. The XREF
field occurs when the table is generated by the XREF control.

In the NAME field, the name of the symbol appears asit was entered. The width of the
field depends on the size of the longest name in the table, up to a maximum of 31
unique characters. Spaces and periods are added to fill out the field for short names.

The TYPE field appears after the NAVE field. The possible types are described in the
following sections.

The VALUE field contains the symbol's value, which is eight hexadecimal digitslong
for symbols within USE32 segments or four digits for symbols within USE16
segments. Not every type of symbol has avalue displayed. Except for floating-point
stack elements and register names, al displayed values are in hexadecimal.

The ATTRI BUTES field contains other pertinent information about the symboal,
depending on itstype. For example, the ATTRI BUTES field for a codemacro contains
the number of its definitions.

The last part of the ATTRI BUTES field contains cross-reference information if the
XREF control isin effect. The field contains one line number for each appearance of
the symbol in the program. A pound sign (#) follows the number if the line contains
adefinition of the symbol. A P follows the number if the symbol was purged on that
line. If the ATTRI BUTES/ XREF field overflows aline, the field continues on
subsequent lines.

The assembler lists as many cross-references as available memory allows. If
memory is exhausted while the assembler is sorting cross-references, an error
message appears at the beginning of the symbol table.

Code macros (C MACRO)

CMACROIN the TYPE field indicates a codemacro. The VALUE field isblank. The
ATTRI BUTES field contains the notation DEFS=n, where n is the number of the
codemacro's definitions.

Public and External Symbols (PUBLIC, EXTRN)
Public symbols have the PUBLI C attribute after all other attributes.

The TYPE field for external symbols contains the type that appearsin the EXTRN
statement. The VALUE field always contains 00000000H and the ATTRI BUTES field
contains EXTRN.

66 Chapter 4 ThelListing (Print File)

Floating-point Stack Elements (F STACK)
F STACK inthe TYPE field indicates a floating-point stack element. The VALUE field
contains ST(i) if the element isindexed, wherei isthe numeric index value, or ST if
the element isnot indexed. The ATTRI BUTES field is blank.

Instruction
I NSTRUCTI ONin the TYPE field indicates an instruction. The VALUE field contains
the name of theinstruction. The ATTRI BUTE field is blank.

Keyword
KEYWORD in the TYPE field indicates a keyword. The VALUE field contains the name
of the keyword. The ATTRI BUTE field is blank.

Labels (L NEAR, L FAR)
L FARandL NEARinthe TYPE field indicate |labels. The VALUE field contains the
label's offset. The ATTRI BUTES field contains the segment name, if known.

Numbers (NUMBER)

NUMBER in the TYPE field indicates a number. The VALUE field contains a
hexadecimal number, which can be negative only for aninteger. The ATTRI BUTES
field contains RELOC for symbols equated to relocatable numbers and REAL for
symbols equated to floating point numbers.

Procedures (P NEAR, P FAR)

Procedures are identified by P NEAR or P FARInthe TYPE field. The ATTRI BUTES
field contains its size in bytes, the segment name, and the word count, if one was

specified.
Records and Record Fields (RECORD, R FIELD)
RECORD and R FI ELD indicate records and record fields, respectively.

The VALUE field for arecord isblank. The ATTRI BUTES field contains the size of
the record in bytes, the number of bits (width) required for that record, and its default
value.

The VALUE field for arecord field contains its shift count. The ATTRI BUTES field
contains the name of the record containing the field and the field's bit width.

ASM 386 Macro Assembler Operating Instructions Chapter 4 67

Registers (REG)

REGin the TYPE field indicates aregister. The VALUE field contains the register
name and the ATTRI BUTES field is blank.

Segments (SEGMENT)

SEGVENT in the TYPE field indicates a code or data segment. The VALUE field is
blank. Thefirst entry inthe ATTRI BUTES field is the segment size. The remaining
attributes duplicate the attributes declared in the segment definition line, including
the defaullts.

Stack Segments (STACK)

STACK in the TYPE field indicates a stack segment. The VALUE field isblank. The
ATTRI BUTES field contains the segment size and information about the attributes,
such as whether they are read-write (RW or PUBLI C. The remaining attributes
duplicate the attributes declared in the segment definition line, including the defaults.

Structures and Structure Fields (STRUC, S FIELD)

STRUCin the TYPE field indicates a structure. The VALUE field isblank. The
ATTRI BUTES field contains the structure size in bytes, and the number of itsfields.

If asymbol isastructure field, its type appearsin the TYPE field and SFI ELD appears
inthe ATTRI BUTES field. The VALUE field contains the hexadecimal offset from the
start of the structure in which the field was defined.

Undefined Symbols (--------)

A symbol that was never defined, or was purged and then referenced without
definition, isindicated by -------- inthe TYPE field. The VALUE field is blank
and the ATTRI BUTES field contains - - UNDEFI NED- - .

68 Chapter 4 ThelListing (Print File)

Variables (VBIT ...V n)

Thetypesfor variablesare vV BI T, V BYTE, VWORD, V DWORD, V. PWORD, V. QWORD,
VTBYTE, V STRUC, and V n (where n isthe type value).

The VALUE field shows the variable's offset. The ATTRI BUTES field contains the
segment name, if known, and PUBLI C or EXTRN, if appropriate. Variable names
defined in an EQU statement can have indexing and segment override attributes. The
override is displayed as the segment register name. Any indices are indicated by the
index register name. If the variableis defined as an array, the item count appearsin
the ATTRI BUTES field as a decimal number in parentheses.

V ABS in the TYPE field indicates an external absolute number. The VALUE field
contains a zero and the ATTRI BUTES field contains EXTRN.

ASM 386 Macro Assembler Operating Instructions Chapter 4 69

Chapter 4 ThelListing (Print File)

Error Messages

This appendix begins with a description of the types of assembler errors and their
error message formats. Following the descriptionsis a numerical list of the
assembler source file error and warning messages and their explanations.

Fatal Errors

Fatal errors cause the assembler to stop processing the source file, display an error
message, and return control to the operating system. There are three types of fatal
errors: invocation control errors, 1/0 errors, and internal errors. These errors cause
the assembler to stop processing the source module without producing an object
module. The following sections explain the types of fatal errors and their message
formats.

Invocation Control Errors

Invocation control errors occur when controls or their parameters are specified
incorrectly on the invocation line. The error messages have the following basic
format:

ASMB86 CONTROL ERROR
CONTROL: control
PARAVETER: par anet er
DELI M TER: character
ERROR: description

ASMB86 TERM NATED

Theparanet er anddel i mi t er linesappear if you specify an incorrect delimiter or
control parameter.

Theerror descri pti ons arethe same as source file nonfatal errors. They are
explained at the end of this appendix in numerical order.

ASM 386 Macro Assembler Operating Instructions Appendix A 65

I/O Errors

I/O errorsindicate problemsin using external files or devices. 1/0 error messages
have the following format:

ASMB86 |/ O ERROR

FI LENAME = fil enane

ERROR = error nunmber and description
ASMB86 TERM NATED

Where:
fil ename is the name of the file containing the error.
error numnber is the operating system error number.

Internal Errors

66

An assembler internal error indicates that an internal consistency check hasfailed. If
an internal error occurs, contact RadiSys, following the instructions on the inside
back cover of thismanual. Please save the exact text of the error message, which has
the following form:

**% ASM386 | NTERNAL ERROR : description

Appendix A Error Messages

Nonfatal Errors and Warnings

The remaining errors are nonfatal and occur within the source fileitself. When a
nonfatal error occurs, the error line assembly is usually wrong; subsequent lines,
however, can still be assembled correctly.

The basic nonfatal error message contains an error number, a source line number, and
abrief description. No line number is given if the assembler detected the error before
the first source line. The message appearsin the print and errorprint files after the
line on which the error was detected.

The following are the message formats:

*** ERROR n IN |, description
*** ERROR n IN |, type description
*** ERROR n IN |, (LINE m description

Where:

n isadecimal number.

I is the number of the listing line in which the error occurred.

type is one of the following:
(PASS 2) indicates an error in pass 2 of the

assembler.

(MACRO) indicates a macro error.
(CONTROL) indicates an assembler control error.
(LINE m) is the line number of an error.

See also: Assembler passes, Chapter 1

Syntax Errors

A syntax error indicates that the program does not conform to the assembly
language's grammar rules.

The syntax error message has this form:

*** ERROR 1 IN |, SYNTAX ERROR

The assembler usually discards the remainder of the line following the syntax error.
If the error occurs within a codemacro definition, the assembler exits definition
mode, causing the ENDMstatement to produce another syntax error, whichis
eliminated when the first error is corrected.

The pointer normally indicates the location of the syntax error. For example:

ASM 386 Macro Assembler Operating Instructions Appendix A 67

ASSUME ES

produces a syntax error after ES, indicating that the line is missing a colon followed
by a segment name at the end. However, the assembler may not detect the error until
one or more characters later. For example:

AAA DB 0O

produces a syntax error at DB although AAA, already defined as an instruction (ASCII
adjust for addition), is the actual error. The assembler interprets the line as an AAA
instruction with DB 0 as the operand field, and because the keyword DB is not alega
parameter, the assembler flagsit asthe error.

The assembler treats codemacro, register, and record names as unique syntactic
entities. If you use these kinds of names improperly, you often receive a syntax error.
For example:

ES EQU 7

isasyntax error because ES is aregister name and is therefore syntactically distinct
from an undefined symbol.

Syntax errors can occur for lines that by themselves are syntactically correct, but are
misplaced within the program. For example, if the following statement is
appropriately placed, it is syntactically correct:

FOO ENDS
However, if it were placed as follows:

DATA SEGVENT

FOO ENDS

it would produce an error, because a syntax error occurs if a SEGVENT or PROC
statement does not have a corresponding ENDS or ENDP statement.

Warnings

68

Warnings occur when the assembler has assembled a source line without producing
an assembler error, but in away that could later cause errors during object module
processing or execution. The warning message format is basically the same asthe
nonfatal error message format:

*** WARNI NG #n IN |, description

Appendix A Error Messages

Macro Errors

When assembling source files, the assembler processes macrosfirst if the MACRO
control (the default) isin effect. Macro errors are errors detected during this macro
pass. Anexample of amacro error is

UNDEFI NED MACRO NAME

which indicates that the text following a metacharacter (% by default) isnot a
recognized user function name or built-in macro function.

Macro errors are followed by atrace of the macro call, which is a series of lines
containing the names of the primary source file and currently nested include files, and
every pending or active macro call.

Control Errors

A control error occursin asource file control line (or in the invocation line, as
discussed earlier). One exampleis

UNKNOWN CONTROL
which indicates that a specified control is not legal.

ASM 386 Macro Assembler Operating Instructions Appendix A 69

Source File Error and Warning Messages

* k k

* % %

* k k

* k k

70

The remainder of this appendix isanumerical list of the assembler source file error
and warning messages and their explanations.

ERROR #1 SYNTAX ERRCR

Y our program does not conform to the assembly language's grammar rules.
ERRCOR #2 TOKEN TOO LONG

The maximum token length is 255 characters.

ERRCR #3 ORDI NAL NUMBER TOO LARCE

Some 64-hit integer values cannot be represented in packed-decimal form. The
approximate range of 64-bit binary numbersis-1.8 x 1019 to 1.8 x 1019, where the

range of values that can be represented by the packed-decimal format is-1018 -1 to
1018 -1

ERROR #4 BAD ASMB86 CHARACTER

The assembler found anillegal character in the input file. An unprintable ASCII
character (which is shown as an up arrow) may cause thiserror. If the unprintable
character isin astring or comment, the string or comment is terminated, and
processing continues with the next character; a syntax error may occur.

A printable character that has no function in the assembly language can also cause
thiserror. This often occurs when macro calls, beginning with the macro
metacharacter, appear in afile that is assembled with the NOVACRO control.

ERROR #5 REAL NUMBER TOO LARGE
The hexadecimal real number specified does not fit the size of the defined variable.

See also: Ranges of variables, ASVI386 Assembly Language Reference
ERRCOR #6 DECI MAL CONVERSI ON ERRCR

A precision underflow or overflow occurred when converting decimal to extended
precision real.

See also: Ranges of variables, ASVI386 Assembly Language Reference

Appendix A Error Messages

* k k

* k k

* % %

ERROR #7 ARI THVETI C OVERFLOW | N EXPRESSI ON OR LOCATI ON COUNTER

This error occurs when an answer to a calculation does not fit the corresponding
storage (for example, not between -128 and 127 or 0 to 255). Such instances include;

» Expressionswith large answers or intermediate values
e Division by zero
* Oversize constants

The error also occurs when the evaluation of the location counter gives aresult
greater than the maximum value (64K for USE16 segments or four gigabytes for
USE32 segments).

For example, X DW 80000001H DUP (0) means duplicate 2G+1 times, aword
whose content is0. The length of aword is 2, therefore the location counter must be
incremented by 2 x 80000001H or 4G+2. Thisisnot avalid 32-bit number and error
#7 isissued.

Certain floating-point values incorrectly elicit an arithmetic overflow message.
These hexadecimal real values are:

SINGLE PRECISION REALS (DD):

07FFFFFFFR, 07F800001R, 07F800000R, 0007FFFFFR, 000000001R,
000000000R, 080000000R, 080000001R, 0807FFFFFR, OFF800000R,
OFF800001R, OFFCO0000R, OFFFFFFFFR

DOUBLE PRECISION REALS (DQ):

07FF0000000000001R, 07FFO000000000000R, 0000FFFFFFFFFFFFFR,
00000000000000001R, 00000000000000000R, 08000000000000000R,
08000000000000001R, 0800FFFFFFFFFFFFFR, OFFFO000000000000R,

OFFFO000000000001R, OFFF8000000000000R, OFFFFFFFFFFFFFFFFR
ERROR #8 STACK OVERFLOW STATEMENT TOO COMPLEX

The assembly statement istoo complex for the assembler to process. Simplify your
statement.

ERROR #9 STACK OVERFLOW STATEMENT TOO LONG

The assembly statement istoo long for the assembler to process. Simplify your
Statement.

ASM 386 Macro Assembler Operating Instructions Appendix A 71

* k k

* k k

* k k

* % %

* k k

* k *

72

ERROR #10 BAD OPERANDS FOR RELATI ONAL OR SUBTRACTI ON OPERATI ON

Subtraction and relational operations are legal only if the right side is an absolute
number, or if both sides are relocatable. If both sides are rel ocatable, they must both
be declared within the same segment, and neither can be external.

ERROR #11 UNDEFI NED SYMBOL; ZERO USED

An undefined symbol has occurred in an expression. Zero is used in its place, which
may cause other errors.

ERROR #12 STORAGE | NI TI ALI ZATI ON EXPRESSI ON | S OF THE WWRONG
TYPE

The only kinds of expressions allowed ininitialization lists are variables, labels,

strings, formals, and numbers. This error aso occurs when the expression'svalue is
too large for the all ocated storage.

ERROR #13 ABSCLUTE OPERAND REQUI RED I N THI S EXPRESSI ON

Certain expression operators require their operands to be absolute numbers. These
operators include unary minus, divide, multiply, AND, MOD, NEG OR, SHL,
SHR, XOR, LOW H GH LOMWN H GHW

ERROR #14 S| ZE OF STACK SEGMENT HAS | NCREASED PAST 64K

A USE16 stack segment has been specified more than once using the STACKSEG
directive with the same stack name. The stack sizes given for each specification are
added together to form atotal stack size for that particular stack segment. The latest
specification has caused the total stack size to exceed 64K.

ERROR #15 SI ZE OF STACK SEGMVENT HAS | NCREASED PAST FOUR
G GABYTES

A USE32 stack segment has been specified more than once using the STACKSEG
directive with the same stack name. The stack sizes given for each specification are
added together to form atotal stack size for that particular stack segment. The latest
specification has caused the total stack size to exceed 4 gigabytes.

ERROR #16 SEGMVENT USED TO I NI TI ALI ZE CS MUST BE TYPE EO OR ER

The segment containing the label used to initialize the CS register in the END
statement must be executable. Therefore, the segment must have an access-type of
EOor ER.

Appendix A Error Messages

* k k

* k k

* % %

* k k

* k *

* k *

* % %

ERROR #17 COMVBI NE- TYPE DOES NOT MATCH ORI G NAL SEGVENT
DEFI NI TI ON

If more than one SEGVENT- ENDS pair exists for the same segment in the program,
they must have the same combine-type. For example, you cannot specify the first
one without a combine-type (private), and declare a subsequent one to be PUBLI C.
L eaving the combine-type blank for subsequent SEGVENT declaratives in the same
module is acceptable; the combine-type given in the first declarative is used.

ERRCR #18 SEGVENT CANNOT BE TYPE EO

The segment used to initialize the DS register in the END statement, or the DS or ES
register in the ASSUME statement cannot have access-type EO.

ERROR #19 SEGMVENT USED TO I NI TI ALI ZE SS MJUST BE TYPE RW

The segment used to initialize the SS register in the END or ASSUME statement must
be writable, and therefore have access-type RW

ERRCR #20 SEGVENT ACCESS- TYPE TO RW

The segment has been declared to have a data part (SEGVENT directive) and a stack

part (STACKSEG directive). Because the stack part is always RW the data part must
also be RW

ERROR #21 --- FILE DCES NOT EXI ST

In DOS systems, this message may be issued even though the file does exist. The
PC/DOS Operating System isinstalled incorrectly. Re-install the Operating System
and make sure that it isDOS V3.0 or later. DOS V3.0 or greater has a different
COMMAND.COM file.

WARNI NG #21 CS-(E)I P AND/ OR SS-SP AND/ OR DS NOT | NI Tl ALI ZED;
REQUI RED FOR MAI N MODULE

The END statement has no CS and/or SS and/or DS register initialization. All three of
these initializations are necessary for a main module.

ERROR #22 M SSI NG END OF SEGVENT STATEMENT

A segment definition must end with a statement in the form:
name ENDS

Where:

nane is the segment name given in the corresponding SEGVENT directive.
ERRCOR #23 M SSI NG END OF MODULE STATEMENT

The END directive isrequired as the last statement in all the assembler modules.

ASM 386 Macro Assembler Operating Instructions Appendix A 73

* k k

* k k

* % %

* k k

* % %

* k k

* k *

* k *

* % %

74

ERROR #24 M SSI NG NAME STATEMENT; DEFAULT MODULE NAME USED

Every module must contain the NAME directive to include a name on the list file
header and in the object module. If the NAME directive is omitted, the name
"ANONYMOUS" is used.

ERROR #25 M SSI NG END OF STRUCTURE STATEMENT
A structure definition must end with a statement in the form:
name ENDS

Where:

nane is the structure name given in the corresponding STRUC directive.
ERRCR #26 M SSI NG END OF CODEMACRO STATEMENT

The definition of a codemacro must end with the ENDM statement.
ERROR #27 UNDEFI NED SEGVENT | N | NI TI ALI ZATI ON

All segment references within an initialization must be to a defined segment.
ERRCR #28 NO DEFI NI TI ON FOR PUBLI C SYMBOL

A public symbol must be defined within the module.

ERROR #29 | LLEGAL OPERAND TO THI S OPERATOR

The THI S operator accepts only atype specifier or a small-integer absolute number
as an operand.

ERROR #30 | DENTI FI ER MJUST BE A LABEL FOR A CS-(E)IP
I NI TI ALI ZATI ON

The identifier used in the CS- 1 P or CS- El P initialization must be alabel. Check the
definition of the indicated identifier.

ERROR #31 SEGMVENT W TH SAME NAME AS STACK MJUST BE PUBLI C AND
TYPE RW

The segment has been declared to have a data part (viathe SEGVENT directive) and a
stack part (viathe STACKSEG directive). Because the stack part is always PUBLI C
and has access-type RW the data part must also be PUBLI C and RW

ERROR #32 VARI ABLES NOT ALLOWED I N REG STER I NI Tl ALI ZATI ON
Variables cannot be used to initialize the DS or SS segment registersin the END

statement. Only segment names can initialize segment registersin this context. A
label isrequired to initialize the CS segment registers.

ERROR #33 OPERANDS TO LOG CAL OPERATORS MUST BE ABSOLUTE
NUMBERS

Other types of operands are not allowed.

Appendix A Error Messages

* k k

* k k

* % %

* % %

* % %

* % %

* k *

* % %

* % %

* % %

* k *

ERROR #34 OPERAND TO BI TOFFSET OPERATOR MUST BE A VARI ABLE OR
STRUCTURE FI ELD

BI TOFFSET allows you to convert variables or structure fields to numbers. If you
receive this error message, you probably already have a number.
ERRCR #35 NO DEFI NI TI ON FOR COWM SYMBOL

A CcOvwWisymbol must be defined within the module.

ERROR #36 OPERAND TO TYPE OPERATOR MJUST BE A VARI ABLE,
STRUCTURE FI ELD, OR LABEL

TYPE can only be used with avariable, structure field, or label. Any other parameter
isillegal.

ERROR #37 OPERAND TO LENGTH OPERATCR MUST BE A VARI ABLE OR
STRUCTURE FI ELD

LENGTH can be used only with avariable or a structure field. Any other parameter is
illegal.

ERROR #38 OPERAND TO SI ZE OPERATOR MJUST BE A VARI ABLE OR
STRUCTURE FI ELD

S| ZE can be used only with avariable or a structure field. Any other parameter is
illegal.

ERROR #39 OPERAND TO W DTH OPERATOR MUST BE A RECCRD

Y ou cannot obtain the width of anything else.

ERRCR #40 OPERAND TO MASK OPERATOR MJST BE A RECORD FI ELD NAME

MASK of anything else has no meaning.

ERROR #41 OPERAND TO STACKSTART OPERATOR MUST BE A STACK
SEGVENT

The operand to STACKSTART must be defined with the STACKSEG directive.

ERROR #42 OPERAND TO OFFSET OPERATCOR MUST BE A VARI ABLE OR
LABEL

The OFFSET operator allows you to convert variables or labels to numbers. If you
receive this error message, you probably already have a number.

ERROR #43 OPERANDS DO NOT MATCH THI' S | NSTRUCTI ON

This error usualy indicates that the type of one of the operandsis inappropriate for
the instruction. For example, the following sequence generatesthis error:

VAR DT 0O
PUSH VAR

Because VARisa TBYTE variable, it cannot be pushed on the stack with PUSH.
ERRCR #44 OPERAND NOT REACHABLE FROM SEGVENT REG STERS

ASM 386 Macro Assembler Operating Instructions Appendix A 75

* k *

* k *

* k k

* k k

* k k

* k%

76

This error occurs when the ASSUVE statement is used incorrectly. For every code
segment reference to avariable that is not defined in the current segment, the
segment in which that variable is defined must be assumed to be accessible from one
of the segment registers. For most programs, a single ASSUME statement at the top of
the program for segment registers DS, ES, FS, GS, and SS is sufficient.

ERROR #45 BAD SCALE FACTOR, MJUST EVALUATE TO THE ORDI NAL VALUE
1, 2, 4, OR 8

The only values allowed for index scaling are 1, 2, 4, or 8.

ERROR #46 PWORD | S A BAD SCALE FACTOR, MUST EVALUATE TO THE
ORDI NAL VALUE

A pword is not allowed as an index scale value.

ERROR #47 TBYTE | S A BAD SCALE FACTOR, MJUST EVALUATE TO THE
ORDI NAL VALUE

A tbyteisnot allowed as an index scale value.
ERRCR #48 32-BI T AND 16-BI T ADDRESSI NG CANNOT BE COMBI NED

The address expression has both 32-bit and 16-bit elements. For example:

MOV AX, [EAX BX]

isnot legal.

ERRCOR #49 SYMBOL ALREADY DEFI NED; CURRENT DEFI NI TI ON | GNORED

A symbol has anillegal multiple definition.
ERRCR #50 | LLEGAL Cl RCULAR EQU CHAI N

The following is an example of acircular chain of EQU statements:

VAR 1 EQU MYVAR
MYVAR EQU VAR 1

ERROR #51 EQU EXPRESSI ON CANNOT CONTAI N A FORWARD REFERENCE

Y ou cannot equate to expressions containing forward references.

ERROR #52 BAD EQU EXPRESSI ON

Anillegal expression occurred in an EQU statement. For example, the following
statement causes this error:

VAR EQU [BX - SI]

Appendix A Error Messages

* k k

* k k

* k k

* % %

* k *

* % %

* k *

* % %

* k *

* % %

ERROR #53 EQU FORWARD REFERENCE CAN ONLY BE A VARI ABLE, LABEL,
OR EQU SYMBOL

Y ou can equate to simple forward-reference names, but not to an expression
containing forward references.

ERROR #54 COMBI NI NG BI T OFFSET AND BYTE DI SPLACEMENT EXCEEDS
MAXI MUM SEGVENT S| ZE

The result from adding the bit offset and the byte displacement is greater than the
64K limit for USE16 segments or the 4 gigabytes allowed for USE32 segments. The
following example shows this case:

BT VAR, OFFFFH

where VAR is at offset OFFFFH in a USE16 segment.

ERRCR #55 STRI NG CONSTANT CANNOT EXCEED ElI GAT CHARACTERS

A string constant used to initialize a dword can contain at most eight characters.
ERROR #56 RELATI VE DI SPLACEMENT TOO LARGE FOR A USE16 SEGVENT

A relative displacement greater than 16K is not allowed in a USE16 segment. The
target would not be reachable using a 16-bit rel ative displacement.

ERROR #57 RELATI VE DI SPLACEMENT TOO LARGE FOR A USE32 SEGVENT
A relative displacement greater than 4 gigabytesis not allowed in a USE32 segment.
The target would not be reachable using a 32-hit relative displacement.

ERRCR #58 ADDI TI ON OF DI SPLACEMENT CAUSED OVERFLOW

The result of the displacement evaluation is either greater than 64K in a USE16
segment, or greater than 4 gigabytesin a USE32 segment.

ERROR #59 | MMEDI ATE DWORD OVERFLOW

An expression has a value that is out of range for storage in a dword.
ERRCOR #60 | MMEDI ATE WORD OVERFLOW

An expression has avalue that is out of range for storage in aword.
ERRCR #61 DI SPLACEMENT TOO LARGE FOR A USE16 SEGVENT

The displacement computed by the assembler is greater than 64K .
ERRCOR #62 DI SPLACEMENT TOO LARGE FOR A USE32 SEGVENT

The displacement computed by the assembler is greater than 4 gigabytes.

ASM 386 Macro Assembler Operating Instructions Appendix A 77

* k k

* k k

* % %

* k k

* k *

78

ERROR #63 | NVALI D SYMBOL TYPE

The symbol type does not match the required operand type for the given instruction.
For example, if F1 isastructure field, then the following statement is an invalid
specification:

PUSH F1

ERRCOR #64 LABEL DECLARED NEAR IS NOT I N THE CURRENT SEGVENT

A label referenced in the current segment is not local to that segment; it was declared
in another segment. Change the label type to FAR.

ERROR #65 TWO REPEAT PREFI XES ARE | LLEGAL

Delete one REPEAT prefix.
ERRCOR #66 TWD LOCK PREFI XES ARE | LLEGAL

Delete one LOCK prefix.
ERRCR #67 SEGVENT S| ZE EXCEEDED

The location counter has become greater than 64K for a USE16 segment or greater
than 4 gigabytes for a USE32 segment. Split the segment into smaller segments.

ERROR #68 PASS TWO | NSTRUCTI ON S| ZE EXCEEDED PASS ONE ESTI MATE

This error occurs when the instruction contains a forward reference and the assembler
overestimates the amount of code the forward reference causes the instruction to
generate. Overestimating usually occurs when:

« Theforward reference is a variable that requires a segment override prefix. For
forward references, explicitly code the override if the operand isin a different
segment:

MOV CX, ES: FWD_REF
» Otherwise, the assembler assumes that it is not needed.
» Theforward referenceisaFARlabel. Explicitly provide the typein this case:
JMP FAR PTR FWD_LABEL
Otherwise, the assembler assumes NEAR.

* SHORT isindicated, or aninstruction is used that takes only SHORT
displacements. Change the code so that it does not use a SHORT jump.

ERROR #69 BAD OPERAND TO MONADI C | NSTRUCTI ON

Monadic means an instruction with one operand. The type of the operand does not
match the type required for thisinstruction.

Appendix A Error Messages

* k k

* % %

* k k

* % %

* k k

* k *

* k *

* % %

* k *

ERROR #70 CURRENT SEGVENT NOT EXECUTABLE

Y ou cannot include instructions in a non-executable segment. Change the segment
attribute in the SEGVENT declarative.

ERRCOR #71 FI RST OPERAND | S | LLEGAL

The type of the first operand does not match the type required for thisinstruction.
ERRCR #72 FI RST OPERAND CONTAI NS AN UNDEFI NED SYMBOL

An undefined symbol was included in the expression used as the first operand for this
instruction.

ERROR #73 SECOND OPERAND IS | LLEGAL

The type of the second operand does not match the type required for this instruction.
ERRCR #74 SECOND OPERAND CONTAI NS AN UNDEFI NED SYMBOL

An undefined symbol was included in the expression used as the second operand for
thisinstruction.

ERROR #75 | LLEGAL OPERAND COVBI NATI ON

The type of one of the operands to the instruction does not match the type required
for the other operands. For example, the following sequence generates this error:

VAR DW 0O
MOV BL, VAR
Because VAR is a WORD variable, it cannot be moved into the register BL.

ERROR #76 | MVEDI ATE EXCEEDS 31; ONLY THE LOAER FI VE BITS WLL
BE USED

The number or expression used as an immediate value is greater than 31, which is
illegal in this context.

ERRCR #77 | MMEDI ATE EXCEEDS LIM TS I N THI S CONTEXT

The number or expression used as an immediate value is greater than the legal value
for this context.

ERROR #79 SECOND OPERAND MUST BE CL

The second operand for this instruction cannot be anything other than the 8-bit
general register CL.

ERRCR #80 FI RST OPERAND MUST BE DX OR EDX

The first operand to thisinstruction cannot be anything other than the DX or the EDX
register.

ASM 386 Macro Assembler Operating Instructions Appendix A 79

* k k

* % %

* k k

* % %

* k k

* % %

* k k

* % %

* k *

* k *

80

ERRCOR #81 THI S | NSTRUCTI ON REQUI RES AT LEAST ONE OPERAND
This instruction must be specified with one or more operands. Some instructions
such as RET accept one or ho operands; others, such as ADD, require two operands.
ERROR #82 THI' S | NSTRUCTI ON DOES NOT ACCEPT ONE OPERAND

Check the description of thisinstruction in the ASM386 Assembly Language
Reference.

ERRCR #83 THI S | NSTRUCTI ON DOES NOT ACCEPT TWDO OPERANDS
Check the description of thisinstruction in the ASMI386 Assembly Language
Reference.

ERROR #84 THI S | NSTRUCTI ON DOES NOT ACCEPT THREE OPERANDS
Check the description of the instruction in the ASVI386 Assembly Language
Reference.

ERRCR #85 UNDEFI NED SYMBCL

The symbol used has not been defined. Add a declaration for the symbol or check for
amisspelling of the symboal.

ERROR #86 SECOND OPERAND MUST BE AX

The second operand for this instruction cannot be anything other than the AX register.
ERRCR #87 SECOND OPERAND MUST BE EAX

The second operand for this instruction cannot be anything other than the EAX
register.

ERROR #88 THI RD OPERAND | S | LLEGAL

The third operand for thisinstruction is of an incorrect type.

ERRCR #89 THI RD OPERAND CONTAI NS AN UNDEFI NED SYMBOL

An undefined symbol isincluded in the expression used as the third operand for this
instruction.

ERROR #96 STATEMENT NOT ALLOWED QUTSI DE SEGVENT BOUNDARI ES
The statement must be included within a SEGVENT/ ENDS pair. Otherwise, it is
ignored by the assembler.

ERROR #97 EIGHT-BIT REG STER | S | LLEGAL I N A REG STER
EXPRESSI ON

8-bit registers are not allowed in aregister expression.

Appendix A Error Messages

* k k

* % %

* % %

* k k

* k *

* % %

* k *

* k *

ERROR #98 | LLEGAL REG STER EXPRESSI ON

The register expression contains some illegal operations. For example, the following
isanillegal register expression:

PUSH WORD PTR DS: [BX] + AX

ERROR #99 NO MORE THAN TWO REQ STERS ALLOWED I N A REQ STER
EXPRESSI ON

Up to two registers can be specified in aregister expression.
ERRCOR #100 | LLEGAL SYMBOLI C REFERENCE | N A REGQ STER EXPRESSI ON

Y ou cannot mix a symbolic reference within aregister expression.

ERROR #101 | LLEGAL OPERATI ON ON SYMBOLI C REFERENCE W THI N
SQUARE BRACKETS

Symbols cannot be specified within bracketed register expressions. For example, the
following isan illegal operation:

PUSH WORD PTR[EBX + VAR]

ERRCR #102 SCALED | NDEX REG STER MUST BE I N SQUARE BRACKETS

Index registers used with scale specifications must be within square brackets.
ERROR #103 OPERAND TO DOT OPERATOR MUST BE A STRUCTURE FI ELD
The dot operator used outside a codemacro islegal only if the left operand is an
address expression and the right operand is a structure field.

ERROR #104 | LLEGAL FLOATI NG PO NT STACK ELEMENT VALUE; ZERO
USED

Stack elements can be specified only as ST or ST(i) , wherei isintherange
of 0to 7.

ERROR #105 REGQ STER EXPRESSI ON | LLEGAL OUTSI DE OF SQUARE
BRACKETS

A register can undergo arithmetic inside square brackets; the operations are
performed on the memory address represented by the bracketed expression. The
arithmetic makes no sense outside the brackets, and is flagged. For example, the
following isillegal:

JMP BX + 3
but the following is legal:

JWP [BX + 3]
JVWP [BX] + 3

ASM 386 Macro Assembler Operating Instructions Appendix A 81

* k k

* % %

* k k

* k k

* k k

* k *

* k *

* k *

82

ERROR #106 ESP CANNOT BE USED AS AN | NDEX REG STER

Any general register except ESP can be used as an index register.

ERROR #107 EXPRESSI ON CANNOT BE USED AS A FLOATI NG PO NT STACK
ELEMENT; ZERO USED

The expression cannot be used as a stack element index.

ERROR #108 | LLEGAL OPERAND TO SEG OPERATOR

The operand to SEG as it appears in an ASSUVE statement must be avariable or a
label (i.e., it must have a segment associated with it).

ERRCR #109 | LLEGAL OPERAND SEGVENT ASSUMPTI ON TO OTHER THAN ES
The destination operand of a string instruction must be accessible through the ES
register.

ERROR #110 DEFAULT ES SEGVENT REG STER CANNOT BE OVERRI DDEN
The string imperatives that involve the EDI register do not allow for an override of

the default ES register; thus, the assembler requires the operand to the instruction to
be accessible from the ES register.

WARNI NG #111 USE OF THE EVEN DI RECTI VE I N THI S CONTEXT DI SABLES
CODE OPTI M ZATI ON

The assembler does not attempt to optimize instructions containing forward
references after specification of the EVEN directive.

ERROR #112 | LLEGAL | NDEX REG STER USED | N SECOND OPERAND; MUST
BE EDI OR DI

Only the general registerseDI or DI are allowed as index registers for the second
operand of this instruction.

ERROR #113 | LLEGAL | NDEX REG STER USED | N SECOND OPERAND; MUST
BE ESI OR SI

Only the general registersgSl or Sl are allowed as index registers for the second
operand of this instruction.

ERROR #114 | LLEGAL | NDEX REG STER USED I N FI RST OPERAND;, MUST
BE ESI OR SI

Only the general registersESl or Sl are allowed asindex registers for the first
operand of this instruction.

ERROR #115 | LLEGAL | NDEX REG STER USED I N FI RST OPERAND;, MUST
BE EDI OR DI

Only the general registerseDI or DI are allowed asindex registers for the first
operand of this instruction.

Appendix A Error Messages

*xx ERROR #116 | LLEGAL | NDEX REG STER USED; MJUST BE EDI OR DI

Only the general registersEDI or DI are allowed as index registersin this context.
*Hx ERROR #117 | LLEGAL | NDEX REQ STER USED;, MJST BE ESI OR SI

Only the general registersESI or SI are allowed as index registersin this context.
*Ex ERRCR #118 NEAR USE16 CALL OR JUMP | LLEGAL I N A USE32 CONTEXT

In a USE32 segment, you cannot specify JMP [AX] because a NEAR USE16 jump
uses only the lower 16 bits of EI P.

rxx ERROR #119 EXCEEDED NUMBER COF OPERANDS ALLOWNED FOR CODEMACROS

The maximum number of operands for a codemacro is 15.
*Ex ERRCR #120 NO | MPERATI VE OR CODEMACRO DEFI NED W TH THI S NAME

Y ou have coded an undefined instruction.
*xx ERROR #121 OPERANDS DO NOT MATCH ANY | MPERATI VE OR CODEMACRO

The number of operands specified for the instruction does not match the number
required for any known imperatives or codemacros.

*xx ERROR #122 | NSI DE A CODEMACRO, THE OPERAND TO THE DOT OPERATOR
MJUST BE A RECORD FI ELD

Y ou have used the DOT operator with a variable of atype other than RECORD.
*Ex ERRCR #123 FORWARD REFERENCE | NSI DE A CODEMACRO |'S NOT ALLOWED

Forward references cannot be included within codemacros.
*xx ERROR #124 CANNOT SH FT A RELOCATABLE VALUE

This error results when arel ocatable value is passed as an operand to an instruction
which shiftsthe operand. Shifting a relocatable value is not allowed.

*xx ERROR #125 NUMBER OF BYTES CGENERATED BY A CODEMACRO IS LI M TED
TO 255

The codemacro istoo long; the maximum is 255 bytes.
*Ex ERRCR #126 RELATI VE DI SPLACEMENT WLL NOT FIT IN A BYTE

This instruction expects a relative displacement within the range of -128 to +127.
il ERROR #127 RELATI VE DI SPLACEMENT WLL NOT FIT IN A WORD

This instruction expects a relative displacement within the range of -32768 to
+32767.

*xx ERROR #128 RELATI VE DI SPLACEMENT WLL NOT FIT IN A DWORD

Thisinstruction expects a relative displacement within the range of -231 and +231-1.
*kx ERROR #129 | LLEGAL OPERAND SEGVENT ASSUMPTI ON TO OTHER THAN S
* kK ERROR #130 | LLEGAL OPERAND SEGVENT ASSUMPTI ON TO OTHER THAN DS

ASM 386 Macro Assembler Operating Instructions Appendix A 83

* k k

* % %

* k%

* % %

* k k

* % %

* k k

* k k

* k *

* k *

* % %

* k k

ERROR #131 | LLEGAL OPERAND SEGVENT ASSUMPTI ON TO OTHER THAN GS
ERROR #132 | LLEGAL OPERAND SEGVENT ASSUMPTI ON TO OTHER THAN FS
ERROR #133 | LLEGAL OPERAND SEGVENT ASSUMPTI ON TO OTHER THAN SS
For errors #129-133, the assembler requires that the operand for the instruction be
reachable through the register indicated in the error message. These errors are

generated when conditions specified in a user-defined codemacro using the
NOSEGFI X statement have been violated.

ERROR #134 | NSTRUCTI ON WAS PURGED

A purged symbol remains undefined until it is redefined.
ERRCR #135 | LLEGAL OPERANDS | NSI DE OF SQUARE BRACKETS
The only kind of expression allowed in square bracketsis an expression involving

registers and/or numbers. Address expressions and other constructs (e.g., record
names) are not allowed.

ERROR #136 CANNOT ADD TWO RELOCATABLE NUVBERS

Only absolute numbers can be added.

ERROR #137 CANNOT SUBTRACT TWO RELOCATABLE NUMBERS | N DI FFERENT
SEGMVENTS

Two relocatable numbers can be subtracted only if they have been defined in the
current module and in the same segment.

ERROR #138 CANNOT HAVE TWO | NDEX REG STERS I N A REG STER
EXPRESSI ON

Two-register expressions are legal only with one base register and one index register
(and an optional displacement).

ERROR #139 CANNOT HAVE TWO BASE REG STERS IN A REG STER
EXPRESSI ON

Two-register expressions are legal only with one base register and one index register
(and an optional displacement).

WARNI NG #140 | LLEGAL USE OF THE CS REAQ STER I N AN ASSUME

Unlike ASM86, the assembler automatically assumes that the selector of the current

segment isin the CS register. CSisallowed in the ASSUVE statement only if followed
by NOTHI NG.

ERROR #141 N287 CONTROL SPECI FI ED: 80387 | NSTRUCTION IS | LLEGAL
When the N287 primary control is specified, any source code lines that contain

Intel 387 floating-point coprocessor instructions, not supported on the Intel 287
coprocessor, are flagged as errors.

ERROR #142 | NVALI D OPERAND TO THE SHORT OPERATOR

Appendix A Error Messages

* k *

* k *

* % %

* % %

* k *

The short operator cannot be used in address expressions which represent memory
references. The short operator is used in LABEL expressions to indicate that jump is
going to be (+127 bytes to -128 bytes) from the end of the current instruction.

ERROR #143 SEGVENT OVERRI DE NOT VALID IN A LABEL EXPRESSI ON

A segment override cannot be used in alabel expression where the label type is NEAR
or FAR. A segment override is used in an operand which represents a reference to
memory.

ERROR #144 OPERAND TO LOW MUST BE A NUMBER OR ABS EXTRN

The LOwWoperator requires as an operand a constant expression that evaluatesto a 16-
bit number. Other types of operands (e.g., variables, labels, segment names, structure
names, or record names) are not allowed.

ERROR #145 CANNOT USE SEGVENT OVERI DE W TH A REG STER

Segment override may only be used with a variable name, alabel that is not of type
NEAR or FAR, or an address expression.

WARNI NG #146 MORE THAN ONE FORWARD REFERENCE SYMBOL | N AN
EXPRESSI ON

More than one reference in an expression has been made to symbols declared after
the expression. Declare the symbol before the reference is made.

ERROR #200 80376 DOES NOT SUPPORT USE16 CODE OR STACK SEGVENTS

When the MOD376 control is specified, a USE16 segment directive cannot be used for
acode or stack segment in the input file. Nor can a USE16 keyword be used in an
EXTRN directive of type NEAR or FAR. USE16 data segments may be included in the
input file. The assembler continues processing after detecting this error, but the
object file will be invalid.

ERROR #201 80376 PHYSI CAL ADDRESS SI ZE EXCEEDED

The 376 processor has a 24-hit address bus. Thus, a segment must be no larger than
16 megabytes. When the MOD376 control is used, the assembler detects any segments
that are too large and issues this error. The assembler continues processing, but the
segment wraps to low memory, possibly overwriting segments that are in low
memory.

ASM 386 Macro Assembler Operating Instructions Appendix A 85

* k k

* % %

* k k

* k k

* % %

* k k

* % %

* k *

* % %

86

ERRCR #202 RELOCATABLE CONSTANT EXPRESSI ONS NOT ALLOWED
Theinstruction or operator requires an expression that takes only absolute constants
asavalue.

ERROR #203 VALUE LARGER THAN 256 BYTES NOT ALLOWED
Theinstruction or operator requires an expression that evaluates to a number in the
range of 1 to 256.

ERROR #204 TEST REG STER |'S NOT VALID UNLESS MOD486 | S
SPECI FI ED

Thetest registers TR3, TR4, and TR5 are only valid when the MOD486 control is
specified.

ERRCR #205 I NSTRUCTI ON IS NOT VALI D UNLESS MOD486 | S SPECI FI ED
The instructions BSWAP, CMPXCHG, | NVD, | NVLPG, VBI NVD, and XADD are only valid
when the MOD486 control is specified.

WARNI NG #206 NO SOURCE DEBUG | NFORVATI ON FOR CODE SEGVENT

There should only be one code segment in a module when the DEBUG control is

specified. Source debug information is only generated for one code segment per
module.

ERROR #207 LOCK PREFI X IS NOT VALID WTH THI' S | NSTRUCTI ON
The LOCK prefix isonly valid with the memory forms of the following instructions:

ADD, ADC, AND, BT, BTC, BTR, BTS, CMPXCHG DEC, INC, NEG NOT,
OR, SBB, SUB, XADD, XCHG XOR.

ERROR #300 Bl NARY ORDI NAL REQUI RED IN A DBI T, ZERO USED
For aDBI T initialization, the values must be specified in binary format.
ERRCR #301 SYMBOL ALREADY DEFI NED, THI S DEFI NI TI ON | GNORED

This error message appears when a symbol is given an illegal multiple definition.

ERROR #302 STORAGE | NI TI ALI ZATI ONS NOT ALLOWNED QUTSI DE OF USER-
DEFI NED SEGVENT

All storageinitializations (DBI T, DB, DW DD, DP, DQ, DT, structure allocation, and
record allocation) must appear within a user-defined segment (a SEGVENT/ ENDS
pair) or a codemacro definition.

Appendix A Error Messages

* k k

* k k

* % %

* k k

* % %

ERRCR #303 CANNOT HAVE A VARI ABLE OR A LABEL IN A DBIT, DB, DQ
OR DT; ZERO USED

The variable or label used has the wrong type for the context. Although conversion
to the offset number automatically occurs for variables of type DW DD, and DP, it does
not occur for those of type DBI T, DB, DQ, or DT. Y ou must explicitly provide the
OFFSET operator and be sure that the resulting number is absolute. In the case of a
DB variable, the resulting number must also be small enough to fit in a byte.

ERRCR #304 EXTERNAL NOT ALLOAED FOR | NI TI ALI ZATI ON

Because the value of the external symbol cannot be known at assembly-time, the
initialization cannot be completed.

ERROR #305 M SMATCHED LABEL ON ENDS

ENDS requires a label that matches the corresponding SEGVENT or STRUCTURE
declarative. If this error occurs, one of several things could be wrong. Y ou could
have a typographical error, amissing ENDS for a hested segment, or an error in the

corresponding SEGVENT or STRUCTURE statement, in which case, this error is
eliminated when the other is fixed.

ERROR #306 | DENTIFIER I'S NOT A STRUCTURE OR RECORD NAME
In thisform of datainitialization, only structures or records are allowed.
ERRCOR #307 UNDEFI NED STRUCTURE OR RECORD | DENTI FI ER

Y ou probably used the DOT operator with a structure or record whose name has not
yet been defined. Alternately, you could have tried to initialize an undefined
structure or record.

ASM 386 Macro Assembler Operating Instructions Appendix A 87

* k k

* k k

* k%

* k *

* k%

* k%

88

ERROR #308 TOO MANY OVERRI DI NG I NI TI ALI ZATI ONS

When using a structure to allocate and initialize storage, the number of overriding
expressions between angle brackets exceeded the number of fieldsin the structure.
All extravalues at the right end of the list areignored. For example:

S STRUC
a DBO
b DB 3
¢ DwW999H
S ENDS
foo S<1, 4, 0AAAH ; This is correct.
baz S<2,5,0BBBH, 93> ; This is incorrect. It has
; four overriding values and
; only three fields.
abc S<, , , 88> ; This is also bad.
; Although only one val ue
appears, the comuas force
it into the fourth

position --- but
the structure has no
fourth field.

ERROR #309 STRUCTURE FI ELD CANNOT BE OVERRI DDEN

Only structure fields initialized with a single expression, a single question mark, or a
single string can be overridden.

ERRCR #310 OVERRI DI NG STRI NG TOO LARGE FCR FI ELD

If astructure field isinitialized with asingle string, the field can be overridden with a
string that islessthan or equal to it in length. If the overriding stringistoolong, itis

truncated so that it fitsinto the field. (If itistoo short, it is padded by the necessary
last characters from the initializing string.)

ERROR #311 | LLEGAL USE OF STRUCTURE NAME
A structure name can appear as a storage initialization operator, as an operand of the

Size operator, or asatypein an EXTRN or LABEL statement. Any other use of a
structure nameisillegal.

ERROR #312 RELOCATABLE VALUE DCES NOT FIT IN ONE BYTE

Rel ocatable numbers cannot be operands for the DB directive.

ERROR #313 CANNOT USE A RELOCATABLE NUMBER FOR THI S
I NI TI ALI ZATI ON

Relocatable numbers cannot be used in thisinitialization because it isimpossible to
determine at assembly-time how to sign-extend the number into the high-order bytes.

ERROR #314 STRI NG LONGER THAN FI ELD SI ZE ALLOWNED ONLY | N DB

Appendix A Error Messages

* k *

* k *

* k *

* % %

* k k

* k *

* % %

* k *

All strings outside the DB context are treated as absolute numbers; therefore, strings
longer than the field size are overflow quantities.

ERROR #315 | DENTI FI ER MUST BE A LABEL OR AN EQUATE

In this context, only alabel or equate is allowed.
ERROR #316 CANNOT HAVE NESTED STRUCTURE DEFI NI TI ONS

Structures cannot be nested.

ERROR #317 CANNOT USE A REAL NUMBER FOR DB, DW OR DP
I NI TI ALI ZATI ON

The DB, DW and DP data initialization directives do not accept real numbers as
operands.

ERRCR #318 CANNOT USE A NEGATI VE DUP FACTOR; ONE USED

The repetition count of a DUP directive must be a positive number, greater than zero.
Thevalue 1 isused if the specified value is a negative number.

ERROR #320 DUP COUNT MUST BE GREATER THAN ZERO, ONE USED

The repetition count of a DUP directive must be a positive number, greater than zero.
Thevalue 1isused if the specified value is zero.

ERROR #350 WORDCOUNT MAY ONLY BE USED W TH FAR PROCEDURES;
| GNORED

A wordcount has meaning only for FAR procedures and therefore cannot be specified
for NEAR procedures.

ERRCOR #351 WORDCOUNT MAY NOT BE GREATER THAN 31; | GNORED

If the specified wordcount is greater than 31, itisignored. The procedureis
considered to have awordcount of 0.

ERROR #352 DOES NOT MATCH CURRENT PROC NAME | DENTI FI ER

ENDP requires alabel that matches the corresponding PROC declarative. One of
several things could be wrong: atypographical error, a missing ENDP for a nested

procedure, or an error in the corresponding PRCC line, in which case this error is
eliminated when the other is fixed.

ERROR #353 CANNOT HAVE MORE THAN ONE NAME DECLARATI VE
The first NAME declarative is honored and this one isignored.
ERRCOR #354 SEGVENT CONTENTS DO NOT AGREE W TH ACCESS- TYPE

Either the segment contains executable code and has an access-type of ROor RW or
the segment contains data and has an access-type of EO.

ASM 386 Macro Assembler Operating Instructions Appendix A 89

* k k

* % %

* k k

* k k

* % %

* k k

90

ERROR #355 ACCESS- TYPE SET ACCORDI NG TO SEGVENT CONTENTS

After a SEGVENT declarative is processed, the assembler keeps track of whether code
and/or datais contained in the segment. If the segment's access-type has not been set
by the time the first ENDS is encountered, the information about the segment's
contents is used to set the access-type.

ERROR #356 M SSI NG END OF PROCEDURE STATEMENT

A labelled ENDP statement was expected. Y ou probably have specified an ENDS (end
of segment) or an END (end of module) statement before closing the procedure
definition.

ERROR #357 CCODEMACRO NAME WAS PREVI OUSLY DEFI NED AS A NON\-
CODEVACRO

Having non-codemacro definitions of a codemacro identifier isillegal. If a
codemacro name has already been defined as something other than a codemacro,
however, al definitions of the symbol must be codemacro definitions. If the symbol
has been defined as anything else, it cannot be redefined as a codemacro unlessit is
first purged.

ERRCR #358 TWO CODEMACRO FORMALS HAVE THE SAME NAME

All formals must have different names within a given codemacro definition.

ERROR #359 CANNOT HAVE MORE THAN 15 FORMAL PARAMETERS

Thislimitation isimposed by the internal codemacro coding formats.
ERROR #360 | LLEGAL SPECI FI ER/ MODI FI ER FOR A CODEMACRO FORMAL

The only specifier lettersalowed are A, C, D, E,F, MR, S, T, and X. Theonly
modifier lettersalowed are B, BI T, D, DN, P, Q T, and W(or none may be specified).

ERROR #361 SECOND PARAMETER MJUST BE A FORVAL

The MODRM statement requires that the second parameter must be aformal parameter
in the required format for this codemacro. For example, the followingisin error:

CODEMACRO USR_MODRM FORMAL1: X

MODRM 0, 0
ENDM

See also: Codemacro reference, ASM386 Language Reference
See Section 9.2 of the for details.

Appendix A Error Messages

* k k

* % %

* k k

* % %

* % %

* k *

* % %

* % %

* % %

ERROR #362 | LLEGAL NESTED CODEMACRO DEFI NI TI ONS

Nested codemacro definitions are not allowed.

ERROR #363 | LLEGAL CODEMACRO SPECI FI ER RANGE VALUE

Range checking for codemacro matching is done only for parameters that are
numbers or registers.

ERRCR #364 FORMAL PARAMETER EXPECTED BUT NOT SEEN

In certain contextsin codemacros (i.e., RELB, RELW SEGFI X, NOSEGFI X, and

MODRM), the only construct allowed isaformal parameter. If the assembler
encounters something other than aformal parameter, this error message appears.

ERROR #365 STATEMENT MAY NOT APPEAR OUTS|I DE A CODEMACRO
DEFI NI TI ON

The directive used (RELB, WARNI NG, etc.) can be specified only within a macro
definition.

ERROR #366 CODEMACRO NAME MUST BE AN | DENTI FI ER

A codemacro name must follow the same rules as any other assembler identifier. For
example, it cannot begin with a digit.

ERRCR #367 FI RST PARAMETER MUST BE A FORMAL OR A NUMBER
MODRMrequires the first parameter to be the name of aformal parameter or an

absolute number. For example, in the following, the first parameter AX to the MODRM
statement isillegal:

CODEVACRO USER- MODRM FORMAL1: X
MODRM AX, FORVAL1
ENDM

ERROR #368 PARAMETER MJUST BE A FORMAL WTH ANE, M OR X
SPECI FI ER

This message signals an incompatibility between the type of aformal parameter and
its usage.

ERROR #369 SECOND PARAMETER MJUST BE A FORVAL WTH AN M OR X
SPECI FI ER

This message signals an incompatibility between the type of aformal parameter and
its usage.

ERROR #370 FI RST PARAVETER MUST BE A SEGVENT REG STER
NOSEGFI X requires the first parameter to be a segment register.

ASM 386 Macro Assembler Operating Instructions Appendix A i

* k k

* k k

* % %

* k k

* k k

* k k

92

ERROR #371 PARAMETER MUST BE A FORVAL WTH CB, CW CD, OR CDN
SPECI FI ER

A relative displacement statement in a codemacro definition requires the parameter to
be aformal parameter list with the corresponding specifiers.

ERRCR #372 FORMAL PARAMETER HAS | LLEGAL SPECI FI ER TYPE

Specifiers can have only certain types. For example, a PREFI X67 statement could
not use aformal with an A specifier.

ERROR #373 PARAMETER MUST BE A FORVAL

The parameter to this codemacro statement must be aformal. For example:

PREFI X67 0O

isillegal.

ERRCR #374 ACTUAL PARAMETER HAS | LLEGAL TYPE

The type of the actual parameter does not match that of the formal definition.

ERROR #375 NEGATI VE NUMBER NOT ALLOAED IN THI' S CONTEXT

Negative numbers are not allowed in certain contexts, such as STACKSEG declaratives
and DUP counts.

ERROR #376 MEMORY REFERENCE CANNOT BE REACHED W TH G VEN
SEGMENT REG STER

The code is probably missing an ASSUME statement, so that the assembler cannot
determine the segment base.

ERROR #377 SEGVENT CONTAINS PRI VI LEGED | NSTRUCTI ON(S)

The assembler has encountered one or more privileged instructions in the segment.
There are two types of privileged instructions: instructions that can be executed only

at privilege level 0, and instructions whose execution is restricted to | OPL level or
more trusted.

Theinstructions that can be executed only at level 0 are LGDT, LLDT, LI DT, LTR,
LMBW CLTS, and HLT. The instructions whose execution isrestricted to | OPL level
or more trusted are | NSB, | NSW OUTSB, | NS, QUTS, | N, QUT, CLI , and STI .

Additional instructions that can be executed only at level 0 include MOV to or from
CRO, CR2, CR3, DRO- 3, DR6, DR7, TR3, TR4, TR5, TR6, and TR7.

The lowest privilege level that can execute these instructions is indicated by the 1/0
privilege level value in the flag register.

ERROR #378 | LLEGAL COWM VARI ABLE TYPE
Only variables or labels can be declared as COVMMand they cannot be initialized.

Appendix A Error Messages

* k k

* % %

* k k

* k k

* k *

* % %

* k *

* % %

ERROR #379 CANNOT PURGE PUBLI C OR EXTRN VARI ABLE

PUBLI C or EXTRN symbols cannot be purged.
ERRCR #380 CANNOT PURGE UNDEFI NED SYMBCOL

The symbol you attempted to purge is undefined. (It may already have been purged.)

ERROR #381 CANNOT LI ST MORE THAN 255 EXTERNALS I N A SI NGLE
STATEMENT

A single assembler statement may not contain more than 255 symbols declared to be
EXTRN.

ERRCR #383 SEGVENT ACCESS- TYPE HAS BEEN CHANGED

This message is areminder that you have reopened a segment with a different access-
type, which islegal aslong as the access-types are compatible.

ERROR #384 SEGVENT REOPENED W TH CONFLI CTI NG ACCESS OR USE
ATTRI BUTE

The compatible sets of access-types are RO and RW with a resulting type of Rw or any
combination of RO, EQ, and ER with aresulting type of ER. The USE attribute of a
segment cannot be changed.

ERROR #385 SYSTEM ERROR CAUSED BY ACCESS TO OBJECT MODULE

An error occurred while the object module was being output. It could be an internal
error or an 1/O error.

ERRCR #500 UNDEFI NED MACRO NAME

The text following a metacharacter (%) is not a recognized user macro name or built-

in macro function. The referenceisignored and processing continues with the
character following the name.

ERROR #501 | LLEGAL EXIT MACRO
The built-in macro function EXI T is not valid in this context. The call has been

ignored. A call to EXI T must allow an exit through a user function or the WHI LE or
REPEAT built-in functions.

ERRCR #502 FATAL SYSTEM ERROR

The macro processor discovered aloss of hardware and/or software integrity.
Contact RadiSys, following the instructions on the inside back cover of this manual.
ERROR #503 | LLEGAL EXPRESSI ON

A numeric expression was required as a parameter to one of the built-in macro

functions. The function call has been terminated and processing continued with the
character following theillegal expression.

ASM 386 Macro Assembler Operating Instructions Appendix A 93

* k k

* % %

* k k

* % %

* k k

* k k

* k *

94

ERROR #504 M SSI NG "FI "

The F built-in function did not end with FI .
ERROR #505 M SSI NG " THEN'

A call tothel F macro function requires a THEN statement following the | F
conditional expression clause. The call to | F has been aborted and processing
continued at the point in the string at which the error was discovered.

ERROR #506 | LLEGAL ATTEMPT TO REDEFI NE A MACRO

Y ou cannot redefine a built-in macro function or parameter name. A user-defined
macro cannot be redefined inside an expansion of itself.

ERROR #507 M SSI NG | DENTI FI ER | N DEFI NE PATTERN

In a DEFI NE statement, the occurrence of an at sign (@) indicates that an identifier
type delimiter follows. No such delimiter existed and the DEFI NE was aborted.
Scanning continued from the point at which the error was detected.

ERROR #508 M SSI NG BALANCED STRI NG

The macro processor expected a balanced-text string. The macro call was aborted
and scanning continued from the point at which the error was detected.

ERROR #509 M SSING LI ST | TEM

In abuilt-in macro function, a parenthesized parameter is missing. The call was
aborted and scanning continued from the point at which the error was detected.

ERROR #510 M SSI NG DELI M TER

A required delimiter was not present. The macro call was aborted and scanning
continued from the point at which the error was detected. This error occursonly if a
user macro was defined with a call-pattern containing two adjacent delimiters. If the
first delimiter was scanned but was not immediately followed by the second, this
€rror occurs.

ERROR #511 PREMATURE EOF

The end of the input file occurred while the call to the macro was being scanned.
This usually occurs when a delimiter to a macro call was omitted, causing the macro
processor to scan to the end of the file searching for the missing delimiter. Thiserror
can occur even if the closing delimiter of amacro call was given (and any preceding
delimiters were not given) because the macro processor searches for delimiters one at
atime.

ERROR #512 DYNAM C STORAGE (MACRCS OR ARGUMENTS) OVERFLOW
Either a macro argument was too long (possibly because of a missing delimiter) or
enough space is not available because of the number and size of the macro

definitions. All pending and active macros and include control lines are popped and
scanning continues in the primary source file.

Appendix A Error Messages

* k k

* k k

* % %

* k *

* % %

* k *

* % %

ERROR #513 MACRO STACK OVERFLOW

Excessive recursion in macro calls, expansions, or include control lines has caused
the macro stack to overflow. All active macro calls (macros whose values are
currently being read, as well as various temporary strings used during the expansion
of some built-in macro functions), al pending macro calls (calls to macros whose
arguments are still being scanned), and all includes are popped, and scanning
continues in the primary source file.

ERROR #514 | NPUT STACK OVERFLOW
Theinput stack is used in conjunction with the macro stack to save pointers to strings

under analysis. The cause and recovery is the same asthat for ERROR #513 MACRO
STACK OVERFLOW

ERROR #516 LONG PATTERN
An element of a pattern -- an identifier or delimiter -- islonger than 31 characters, or

else thetotal pattern islonger than 255 characters. The DEFI NE function is aborted
and scanning continues from the point at which the error was detected.

ERROR #517 | LLEGAL METACHARACTER
Y ou attempted to change the macro processing metacharacter to anillegal character

(ablank, letter, numeral, parenthesis, or asterisk). The current metacharacter remains
unchanged.

ERROR #518 UNBALANCED ")" | N ARGUMENT TO USER- DEFI NED MACRO
The macro processor encountered an unmatched right parenthesis while scanning a

user-defined macro. The macro call is aborted and scanning continues from the point
at which the error was detected.

ERROR #519 | LLEGAL ASCENDI NG CALL
A macro call beginning inside the body of a user-defined macro or built-in macro

function was incompletely contained inside that body (possibly because of amissing
delimiter for the macro call). The call is aborted.

ERROR #520 BAD CONTRCL PARAMETER

A control parameter is out of bounds, of the wrong type, or missing. Check for
typographical errors.

See also: Control descriptions, Chapter 3
ERRCOR #521 MULTI PLE | NCLUDE

Only one I NCLUDE control isallowed on asingleline. Only the first (Ieftmost)
| NCLUDE is processed; the rest are ignored.

ASM 386 Macro Assembler Operating Instructions Appendix A 95

* k k

* % %

* k k

* % %

* k k

* % %

* k k

* % %

* k *

* k *

96

ERRCR #600 ASMB86 | NTERNAL ERROR

Aninternal consistency check hasfailed. Contact RadiSys, following the instructions
on the inside back cover of this manual.

WARNI NG #601 TOO MANY ERRCRS; FURTHER ERROR MESSAGES SUPPRESSED
After the twentieth error on a given source line, this message is given, and no more
errors are reported for the line. Normal reporting resumes on the next source line.
ERRCR #602 M SSI NG | NPUT FI LE

The assembler found the end of the invocation line before a source file specification
was scanned.

ERROR #603 | NVALI D SYNTAX

Check the manual syntax description for this control.
ERRCR #604 | LLEGAL DELI M TER
The assembler found a character in acontrol line or the invocation line that is not a

legal delimiter. Check to see that the correct characters were used and that all the
parameters were correctly entered.

ERROR #605 M SPLACED PRI MARY CONTRCL

Primary controls must appear at the start of the source file before all comments and
blank lines.

ERROR #606 UNKNOWN CONTRCL

Theindicated control is not recognized as an assembler control in this context. It
may be misspelled, mistyped, or incorrectly abbreviated.

ERROR #607 EXPECTED LEFT PARENTHESI S

The assembler expected a left parenthesis as the delimiter for a control parameter.
ERRCR #608 RESTORE W THOUT SAVE

A RESTORE control was encountered without a corresponding SAVE control.
ERRCR #609 | NVALI D NUMERI C VALUE

An invalid number was used as a parameter for a control.
ERRCR #610 PAGE W DTH OUT OF RANGE

The parameter for PAGEW DTH control must be a decimal integer from 60 to 132.

Appendix A Error Messages

*xx ERROR #611 PAGE LENGIH OUT OF RANGE

The parameter for the PAGELENGTH control must be a decimal integer from 10 to
65535.

rxx ERROR #612 EXPECTED RI GHT PARENTHESI S

The assembler expected aright parenthesis as the delimiter for a control parameter.

ASM 386 Macro Assembler Operating Instructions Appendix A

97

80 Appendix A Error Messages

System Hardware and
Software Requirements

This chapter describes the hardware and software requirements, and the procedure for

making required modifications to the operating system.

Hardware and Software Requirements
e Hardware-- IBM PC XT or IBM PC AT or fully equivalent system
* Operating system -- DOS Version 3.0 or later
» Fixed disk storage capacity -- sufficient for the size of the product (360K bytes)

e System memory requirements -- 512K bytes minimum RAM for ASM 386 v3.0,

357K bytesfor ASM 386 v4.0

ASM 386 Macro Assembler Operating Instructions Appendix B

81

Modifying the System Configuration

Before using the Intel Software Development Tools from DOS, the system
configuration file CONFI G. SYS must be created or modified to include the FI LES
and BUFFERS commands. The FI LES command specifies the maximum number of
the files that can be opened at the same time. The BUFFERS command specifies the
number of disk buffers allocated in memory. To use Intel Software Development
Tools, set the value of FI LES to 12 (or greater) and set the value of BUFFERS to 10
(or greater).

Follow these steps to create the CONFI G. SYS file using the DOS COPY command:
1. Type

copy con \config.sys <CR>
2. Enter the commands:

FI LES=12 (or greater) <CR>
BUFFERS=10 (or greater) <CR>

3. Tosavethefile, pressthe F6 key and then press <ENTER>.
4. Reboot the system.

If thisfile already exists on the system, use an editor to add or modify the existing
file by including the commands FI LES=12 (or greater) and BUFFERS=10 (or
greater).

82 Appendix B System Hardwar e and Softwar e Requirements

Index

A

addresses and offsets, 51
assembler errors, 65
attributes, 60
ATTRIBUTESfield, 66

B

binder (BND386), 2
blank lines, 8
builder (BLD386), 2

C

codemacro, 66
COMM attribute, 61
command, 5
command files, 22
command lines, 6
comment lines, 8
control
errors, 69
lineindicator ($), 14
lines, 8,12, 14

parameter delimiters, 6

parameters, 12
precedence, 12
precedence, 11
controls, 5, 6, 8, 11, 12
general, 8
in commands, 6
in macros, 15
within macros, 14

ASM 386 Macro Assembler Operating Instructions

D

DEBUG control, 27
debuggers, 50

descriptor tables, 3
DOS batch files, 21

E

EJECT control, 28
equated symbols, 60
ERRORPRINT control, 29
errorprint file, 18, 42
external symbols, 66

F

fata errors, 65

floating-point coprocessor, 39

floating-point stack element, 61, 67

G

GEN control, 31
general controls, 11
GENONLY control, 31

H

hardware/software requirements, 81

header, 35, 41, 43, 48, 59

1/0O errors, 65, 66
in-circuit emulators, 2
INCLUDE control, 34

Index

83

indexing attribute, 60
input source, 6
instruction, 67
internal errors, 65, 66
invocation, 21
commands, 6
examples, 7
syntax, 5
invocation control errors, 65

K
keyword, 67

L

labels, 67

librarian (LIB386), 2
limits, 17

line numbers, 55, 63
LIST control, 35

listing, 35, 44, 47, 54, 55
listing file, 18

|ocation counter, 55, 60
logical files, 18

logical names, 53

M

macro, 18, 55
cal, 69
cals, 31, 34, 36
definitions, 12, 13
errors, 69
expansion, 31, 63
metacharacter (%), 5
nesting, 14
processor, 14, 20
string, 5
MACRO control, 36
mapper (MAP386), 2
maximum
nesting level, 34
nesting level of SAVEs, 45
page width, 42
segment size, 51
title length, 48

84 Index

minimum page width, 42
MOD376 control, 37
MOD386 control, 37
MODA486 control, 37
multiple controls, 12

N

N287 control, 39

N387 control, 39

NAME field, 66

nesting indicator, 62
NODEBUG control, 27
NOERRORPRINT control, 29
NOGEN control, 31
NOLIST control, 35
NOMACRO control, 36
nonfatal errors, 67
NOOBJECT control, 40
NOPAGING control, 43
NOPRINT control, 44
NOSYMBOLS control, 47
NOTY PE control, 50
NOXREF control, 54
numbers, 67

O

object code, 18, 55, 62
OBJECT control, 40
object file, 18, 27, 40
object files, 2
object module, 50
object modules, 1
OMF-386, 2
operand sizes, 51
output file, 6, 18
output files

pathname limitations, 18
override attribute, 60
override prefixes, 51

P

pagetables, 3
PAGELENGTH control, 41
PAGEWIDTH control, 42

PAGING control, 43
parameters, 6
pathnames
limitations, 18
primary controls, 8, 10
PRINT control, 44
print file, 18, 35, 41, 42, 43, 44, 47, 54, 55
procedures, 67
program restrictions, 17
public symbols, 66

R

record definitions, 60
records and record fields, 67
registers, 68

relocation indicator, 62
RESTORE control, 45

S

SAVE control, 45

scanning modes, 14
segment and system descriptors, 3
segments, 68

severe errors, 20

sign-off message, 20
sign-on message, 20
source code, 55

sourcefile, 5, 8, 20, 34
source file controls, 12
source lines, 18, 29

source statements, 63
sourcetext, 31,55

stack, 45

stack segments, 68
structures and structure fields, 68
symbol table, 20, 47, 54, 64
symbol tablefields, 66
symbolic debugging, 27
SYMBOLS control, 47
syntax errors, 67, 68
system utilities, 2

Index—85

T

task state segments, 3
temporary files, 53
temporary work files, 19
TITLE control, 48
TYPE control, 50
TYPE field, 66

U

undefined symbols, 68
USE16 control, 51
USE32 control, 51
utilities, 1V

VALUE field, 66
variables, 69

w

warnings, 67, 68
WORKFILES control, 53

X
XREF control, 54

86

Index

RadiSys - ASM 386 Assembly
L anguage Reference

RadiSys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150
www.radisys.com

07-0578-01

December 1999

EPC, iRMX, INtime, Inside Advantage, and Radi Sys are registered trademarks of
RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of
RadiSys Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95
isatrademark of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft
Corporation.

Intel isaregistered trademark of Intel Corporation.

All other trademarks, registered trademarks, service marks, and trade names are property of
their respective owners.

December 1999

Copyright 0 1999 by RadiSys Corporation

All rights reserved

Quick Contents

Chapter 1. Introduction

Chapter 2. Segmentation

Chapter 3. Program Linkage Directives
Chapter 4. Defining and Initializing Data
Chapter 5. Accessing Data

Chapter 6. Processor Instructions
Chapter 7. Floating-point Instructions
Chapter 8. Textmacros

Chapter 9. Codemacros

Appendix A. Processor Architecture Summary
Appendix B. Sample Program

Appendix C. Keywords and Reserved Words

Appendix D. ASCII Tables

Appendix E. Differences Between ASM386 and ASM286
Appendix F. Differences Between the Intel386™ and 376

Processors

Appendix G. Differences Between the Intel386 and Intel486™
Processors

Index

ASM 386 Assembly L anguage Reference 3

Notational Conventions

This manual uses the following conventions:

UPPERCASE In syntax descriptions, uppercase indicates keywords or

reserved words that must be spelled exactly as shown. They
can be entered in either uppercase or lowercase.

Within the text, uppercase indicates a mnemonic, operator,
or example code.

italic Aniteminitalic is ametasymbol that may be replaced with

[]

an item that fulfills the rules for that symbol.

In syntax descriptions, square brackets indicate an optional
part of a statement. If square brackets are required, the
syntax shows them in bold fact type, as|[].

However, in certain register expressions, brackets are
required within the actual statement. The descriptions of
such statements will indicate this requirement.

In syntax descriptions, an ellipsis indicates that the preceding
argument or parameter may be repeated.

. In syntax descriptions, an ellipsis, preceded by a comma and

enclosed in brackets, indicates that the immediately
preceding item may be repeated, but that each repetition
must be separated by a comma.

In examples, avertical ellipsisindicates that some lines of
code have been omitted.

In syntax descriptions, any punctuation other than ellipses and brackets must
be entered as shown. For example, the colon in the following syntax
description must be included in a statement:

label:[instruction]

User input, command syntax and conputer output are printed
like this, in regular nonospaced text.

I n exanpl es conbi ni ng user input and conputer out put,
user input is printed like this, in bold nonospaced
t ext.

Throughout this manual, the word "may" means "is permitted to".

[]
A

Note
Notes indicate important information.

CAUTION
Cautions indicate situations which may damage hardware or data.

Related Publications

The following Intel manuals contain detailed information about processor
architecture and the assembler for your development system:

» 80386 Programmer's Reference Manual, order number 230985, describes
processor architecture from an application or system programmer's point of
view.

* ASM386 Macro Assembler Operating Instructions, order number 451290 for
DOS and 167675 for VAX/VMS, describes the assembler controls, assembler
output, and assembler error messages.

* Intel386™ DX Microprocessor Hardware Reference Manual, order number
231732, describes the processor from a system engineer's or hardware
designer's point of view.

The following Intel manuals contain detailed information about using floating-
point coprocessors with the processor:

» 80386 Programmer's Reference Manual, order number 230985, Chapter 11,
describes coprocessing and multiprocessing.

e 80387 Programmer's Reference Manual, order number 231917.

* IAPX 286 Programmer's Reference Manual, order number 210498, Numerics
Supplement section, provides information about the Intel287™ coprocessor.

Y ou may also need the processor systems utilities manual(s).

ASM 386 Assembly L anguage Reference

Contents

1 Introduction

ADBOUL TRISM@NUALcoiiiiiiiiee e 23
ADOUL ThiS Chaptereceiceiicie et 23
LexiCal EIEBMENESccoiieiiee et et 24
(O T o 1= S S 24
TOKENS aNd SEPArALOIS.veeueevieeiie ettt 24
LOQICal SPACES.....eiieitieiieiieit ettt 25

(D= 10 11 (€S 25

Ko 1= g1 (] 1= £ P UPRRRRR 26
Continued Statements and COMMENES..........ccevvreereerieneeneseerie e 26
ASSEMDIEr SLAEEMENTSeeviiiiiiieieee e 29
ASSEMDIEr DIFECHIVESveeviciieciie sttt st 29
ASSEMDIEr INSLIUCHIONScviieiiciieiiciee e s 31
Specifying Assembler Statements..........ccoccvveerviieneeie s 38
Specifying Directive Statements.........cceveveerenieene e 38
Specifying Instruction Statements...........cccocevveeveenieese e 39
Assembler Program SETUCIUIE.cocueeiieeiee e e 40
NAME DIFECHVEcoiuiiiieiieieee et 41
STACKSEG DIFECLIVE......ceitieiiieieeiie ettt 42
SEGMENT Directive for Data Segments.........ccccceveveevieeeceeseeseeesenennns 42
SEGMENT Directive for the Code Segment..........cccccvvevvieevieenieesinnns 43
ASSUME DITECLIVE. ...c.veiitieiiieitie sttt 44
END DITECIVE ...oveiitieitieieeiee ettt 45
Initializing Segment Registers with Instructions...........cccccevveveeseenen. 45
Initializing DS, ES, FS, and GS.......cccoooevireree e sn e 46
INITAIIZING SS...eeeeeeee e 47

2 Segmentation

Overview of SEgMENtatioN..........ooceiiiiiiii e 49
Defining Code, Data, and Stack SEgMENtSc.cccvevvveenieieneeiesieseeseeens 51
SEGMENT..ENDS DIF€CliVEceovecviiieiecie e 51
Specifying EO, ER, RO, or RW ACCESS........cccueviereeiesesiesieseeens 52
Specifying USE32 or USELB.........ccovvieviiiececee e 52

ASM 386 Assembly L anguage Reference Contents 7

Specifying PUBLIC of COMMONccccooiiiiinenienienieesee e
Multiple Definitions for a Segment.........cccocvvevereeceniesiesceereseens
Lexically Nested or Embedded Segment Definitions....................
STACKSEG DiFECLIVE.....evieeiiieeeie ettt
Combining Stack and Data Segmentsccoveveveveeneeieeseseenenn
ASSUMING SEOMENT ACCESS....uveiueeitieiesieesieeeesteseestesseesteessesseesteesesse seensenns
ASSUME DITECHIVEcvieiiiiiiie ittt e
Specifying Segment Selectors with ASSUME..........cccocvvvveninen.
Specifying ASSUME NOTHING and ASSUME CS:NOTHING...

Program Linkage Directives
Modular Programming with NAME and ENDcccoooiiniinniie e
NAME DIFECHVE ...ttt s
END DITECLIVE.eiiiiiiitieeeeeie ettt sn e
Defining Shared Datawith PUBLIC, EXTRN, and COMMcccccevennene
PUBLIC DITECLIVE.ccuiitiieieeeiesie sttt
EXTRN DiIFECHIVE.....ccueiuieiiii ittt s
Placement of EXTRN ..ot
COMM DITECLIVE ...ttt e

Defining And Initializing Data
Overview of Assembler Labelsand Variables.........ccocceieiniiiiiiincee
Assembler Label and Variable TYPEScovvveiveve i
AsSEMDIEr Data ValUES.......ccoiieiieiiiiisiie e see et
Dala TYPES ..ttt
Numeric DataValue RaNQES.........cocvveereeiiiiesieiesee e
Specifying Assembler Data ValUEs..........ccooovveereeienienieseee e
Initiadizing VariableS........coveeiiiiiecec e
How the Assembler Evaluates Constant EXpressions....................
VATADIES. ...
Simple Data AllOCALIONS........ccoieieiie et
Variable AttriDULEScoivieieecc e
Defining and Initializing Variables of aSimple Type......ccccvcvveveenine
DBIT DITECLIVE. ..o itie ittt sttt sttt enee s
DB DiITECLIVE ...ccutiiiieieiestee sttt sttt st st sree st sreeseeens
DWW DIFECLIVE.....ceitii ittt sttt sttt
DD DIFECHIVE. ..eevieteeie e ctee st steeee sttt sttt sre e steebesaesreesreesreen
DP DiIFECLIVE....cetieieeie ettt sttt sttt et sreesree
(D1 1 =" (/= TSR
DT DITECHIVE .ottt
Defining Compound Types and Their Variables.........ccccccvvcvvcveveenen,

Contents

Defining Implicit NEAR Labels........coocoviiiiiieieceeesece e
PROC DITECLIVE ...c.eeiieieieeiieee sttt

Using Symbolic Data..........cccccecvveennennee.
EQU Directiveccccvevveecveeciee,

PURGE DiTECHIVE.....cciiicttteeiee ettt ee et s e sare e e s s e sannees

100
102
104
106
109
111
112
113
114
114
115
116
118
119
122
123
125

5 Accessing Data
Overview of Assembler Expressions.....
Constant EXPressions..........cccoeveveeene
Address EXpressions..........ccccovevenne
Variable and Label Names as A

ddress EXpressionscceveenee.

REGISLEr EXPrESSIONS....c.vveieieieiiieiieeiesieesieeeesieesteessesseessessreessessenns
Combining Simple Address and Register EXpressions...................
Structure Fieldsin Address EXpressions.........ocveevveeeeneseneennnns
Relocatable EXPreSSioNS.......ccovvieeieenieeie et

OPEratorS ...covve e

OpeErator PreCEAENCEivveiiicie ettt s
| SOl @tiON OPEILOrS.....ccveeeeeiieeiteeee ettt st
Multiplication and DiviSion OPEratorsS.........cccceveeeerieseeneseseereesienieens
Shift OPEraLOrS.....ccveiivieiieeieee et s et sreesreens

Addition and Subtraction Operators,

Relational OPEratorsS........ceceeicieiiieereeese e seeesre e stee et e st srae e snee s
(ol [or= IO o 1= 7 (0] £ TSRS
Attribute Value OPEratorSceccveeieeeieesieesteesieseteeste e sreesree e sree s e

L B 0] o< = o] SR

SEG Operator........ccocveevveeeenee.
OFFSET Operatorcccccvvee...
BITOFFSET Operator

LENGTH OPErator......ccccveeeeieieecitieeeeeeesteeeesee e s seeeeeninee e s sneee s

TYPE Operator.........cccceeveveenns

ASM 386 Assembly L anguage Reference

Contents

127
128
128
129
129
130
131
132
134
136
137
138
139
140
141
142
144
144
145
146
147
149
149

SIZE Operator

STACKSTART OPEIaOr.......ceiiiiiieieeiiieeeeeiie e ee e e ssneee e
Attribute Override OpPErators.........cocuevvieereeiesieese e
Segment Override OPEratorcovevereeieereeieneseeseeseeseeneeseeas

PTR Operator
SHORT Operator
Record Specific Operato
WIDTH Operator....
MASK Operator

S

Using Field Names as Shift Counts............ccoovvverenenininsenienniens

Instruction Operands............
Register Operands.........
Immediate Operands......
Memory Operands.........

Memory Addressing Methods...........oocvieiiee i

Direct Memory Addressi

(010 TR

Indirect Memory AddreSSiNgcceeieeeeeeieeeieeseesee e see e seeeseee e

Register Indirect Ad
Based Addressing ...

[0 1= oo TR

Based Indexed AdAreSSiNg......cccocveverireeniereseeseeseeesee e seee s

Indexed Addressing
Scalingcoceveveeeen,

Default Segment Registers and Anonymous References...............

Bit Addressing...............

151
152
152
153
155
157
158
158
159
160
161
161
162
162
163
164
164
166
166
167
167
168
169
170

6

10

Processor Instructions
Overview of the Processor INStruction Setooccveeeeeciieee i
Data Transfer INSLIUCLIONSeeeivieiciie et
Instructions That Assign DataValues..........ccceevevveienvneeiiennnnnn,
Instructions That AjUSt Data.........ccceveeveeieenenieieseene e e
Instructions That Make Stack Transfers.......ccoovvevceeevveeiiivee e,
Instructions That Yield Definitive Flag Values..........ccccccvvvnienen.

Conditional Instructi

Control Instructions.......
System Instructions.......
Instruction Statements..........
Instruction Statement Sy
Instruction Attributes.....

ons That Test Flag Values...........cccocevvvivenenne

]2 PP

Address Size Attribute..........cooviiiii e,
Operand Size AtHDULEc.oveereeiieeee e

Stack Size Attribute

Contents

171
172
172
176
177
178
179
180
181
182
182
183
184
184
185

Instruction ENcoding FOrMatccceveeiiiieninieie e 185

Instruction Prefix CodesS........ooviieiiieiesie e 186
MOARM and SIB BYLES.......ccecvieiiieiiecieesie e 188
Processor Instruction Set REFErenCeoocvvveveiiinieciie e 193
How to Read the Instruction Set Reference Pages..........ccccovvvvveverinnnns 193
OPCOUE COlUMN.....oviiiiieitie sttt sreesreesreens 194
INSLrUCtioN COlUMIN......coiiiiieie e e e 195
ClOCKS COIUMN.....ciitiiiiie ettt sreesreens 200
DesCription COlUMN.........coiieieiieiie et sreens 201
OpPEration SECLION.......civiiieiieriieie et 201
DiSCUSSION SECLION......oitieiiieieeie et 207
Flags Affected SECtiON.........ccovveiiieiiere e 207
Exceptions by Mode SECHiONcccvveviieiiiieiceee e 207
How to LOOK UpP an INSEFUCLIONveeeiiiieie e 210
Processor INSEIUCHIONS.uvvieiiiiiiiiie et 212
AAA ASCII Adjust after Addition.........ccccceeveeceecievce e 212
AAD ASCII Adjust AX before DivisSion.........ccccceevceeviieeesineennnnn 214
AAM ASCII Adjust AX after MUltiplyccoeoeeveevieeece e 215
AAS ASCII Adjust AL after Subtractioncccccevevecviieevenenne 216
ADC AddWith Carry....cccceccee e 218
ADD (Integer) Add.......ccceviieieieceeeee e 220
AND LogiCal AND......ccoeiiieieecee e e 222
ARPL Adjust RPL Field of Selectorcccoovveveviieevie e, 224
BOUND Check Array Index Against Bounds..........cccocvveveveennen. 226
BSF Bit SCan FOrWard...........ccooeeiiriineeninieneeie e 228
BSR Bit SCAN REVEISE.......ciiieeieeiiiiieeee et 230
BSWAP Byte Swap (not available on Intel 386 or
376 PrOCESSOIS) wvvveuvveeiureeiteeesseresseeessesesseeessseessessnsesessesesseesnsenans 232
2 I = T A = SO PSSR 233
BTC Bit Test and Complement............ccceevrieneenenieeniennie e 236
BTR Bit Test and RESEL.......cccccvevieiieviiese e 239
BTS Bit Test and Set......cccovveiieieeieee e 242
CALL Call ProCedUure........ccccveievecieseieseenee e e seee e see s 245
CBW/CWDE Convert Byte to Word/Convert Word to Dword..... 252
CLC Clear Carry Flagcccocvieeiiiiieereeeenieee e 253
CLD Clear Direction Flagccceveeieieenieeeeeeeee e 254
CLI Clear INterrupt Flag........ccovvererieiieiecee e 255
CLTS Clear Task Switched Flag in CRO..........cccoceeeeinvienieriennn 256
CMC Complement Carry Flag........ccooeveeneneininineseeesesieee 257
CMP Compare TWO Operands..........oceecvereeriereeseneenieseenieseene 258
CMPS/ICMPSB/CMPSW/CMPSD Compare String Operands...... 260
CMPXCHG Compare Exchange (not available on Intel 386
OF 376 PrOCESSONS) ...veeuveeeeereeesteesteesieesieenseesseesseesseesseesseenseessesnnes 263

ASM 386 Assembly L anguage Reference Contents 11

6

12

Processor Instructions (continued)

CWD/CDQ Convert Word to Dword/Convert Dword to Qword..
DAA Decima Adjust AL after Addition..........cccceeevevivnceenenennne
DAS Decimal Adjust AL after Subtractionccccceevevervennnn
DEC Decrement by 1......cccocoeiiiiiiiieiiese e
DIV UNSIgNEd DIiVIGE......ccoveiriieiiiiesieeie e
ENTER Make Stack Frame for Procedure Parameters................
HLT Halt e
IDIV SIgNed DIVIdE......cceeieieiieiiiiesiene e e
IMUL Signed MUItIPIY ...coiienieiieiieceee e
IN InpUEt FrOM POIt ..o
INC InCrement DY L......ccooovviiiiiinieiicieee e e
INS/INSB/INSW/INSD Input from Port to String.........cceeeeveeee.
INT/INTO Transfer Control to Interrupt Procedure.....................
INVD Invalidate Data Cache (not available on Intel 386 or 376
PrOCESSOIS) ...uvvieuieesureesteeeteeestaeeseesseeesseeessseessseesseessaeesnneesnses
INVLPG Invalidate Paging Cache Entry (not available on
INtel386 Or 376 PrOCESSOIS) ..veevveeureerieeeieesreeereeeeesaeesreesreesaees
IRET/IRETD Interrupt REIUMNoeeeeeeieece e
Jec Jump if ConditioniSMEtcooveeveiiiee e,
IMP JUMP e
LAHF Load Flagsinto AH RegiSter........cccevvuviveeieeser e e
LAR Load AcCeSS RIghES......cccoeeiciieriieiee e stee e
LDS/LES/LFS/ILGS/LSS Load Full Pointercccccovvvvereeniene.
LEA Load Effective AAress........cccoveeveveeneniene e
LEAVE High Level Procedure EXit........ccccoevveveveesieeieeneesnennn
LGDT/LIDT Load Global/Interrupt Descriptor Table Register ...
LGDTW/LGDTD/LIDTW/LIDTD Load Global/Interrupt
Descriptor Table Register with WORD/DWORD Operand........
LLDT Load Local Descriptor Table Register........cccoevevvvvvennnen.
LMSW Load Machine Status Word..........cccceveeveveesinenneneennnnn
LOCK Assert BusLOCK# Signal PrefiX.....ooveeieieeneicieniene
LODS/LODSB/LODSW/LODSD Load String Operand..............
LOOP/LOOPcond Loop Control with (E)CX Counter
LSL Load Segment Limit.......cocovoeniiiiiiiniereneeeee e
LTR Load Task REQISIEN.......cccoveiiieiinie e
MOV MOVEDELA......cccecieiiiiiie et e
MOV Move to/from Special RegISLErS......cccevvrierieneeienee e
MOVSMOVSB/MOVSW/MOVSD Move String to String.........
MOVSX Movewith Sign-Extend ...
MOVZX Movewith Zero-Extend...........cccooovviveneniinninenee e
MUL Unsigned Multiplication of AL, AX or EAXccooevenene
NEG Two's Complement Negation..........ccoceevereineeiineneenennnn.

Contents

265
267
268
269
270
272
274
275
277
280
282
283
286

292

293
294
299
304
310
311
314
317
319
320

322
324
326
327
329
331
333
336
338
341
343
346
347
348
350

N[O N[X @] o= o] o [P 351

NOT One's Complement Negation..........ccccecvveeneeieneseennsnens 352
OR Logical INCIUSIVE ORccoooieiiieieciesieese e 353
OUT OULPUL tO POIt ... e 355
OUTS/OUTSB/OUTSW/OUTSD Output String to Port............... 357
POP POP StACK TOP .uveeveeeieiiie ettt st sneeens 360
POPA/POPAD Pop All General REQISLENSoocvvevveeieeieecie e 363
POPF/POPFD Pop Stack into FLAGS or EFLAGS Register 365
PUSH Push Operand onto the Stack...........ccocvveevvnincinneneniene, 367
PUSHA/PUSHAD Push al General Registers.........cccoveviveniveninnne. 369
PUSHF/PUSHFD Push Flags Register onto the Stack.................. 371
RCL/RCR/ROL/ROR ROALE.......ccerireiiesiesienienerie e 372
RET Return from ProCcedure...........cooveeevieeneeienesie e 381
SAHF Store AH Iinto Flags.....ccoovvvieeieiiecee e, 386
SAL/SAR/SHL/SHR Shift.....coiviiiieiieieee e 387
SBB Integer Subtraction with Borrow..........ccccceeeveveeveeccieneenee. 391
SCAS/SCASB/SCASW/SCASD Compare String Data................ 393
SETcc Byte Set on Condition........ccceeeveeviieenieeieesee e e 395

SGDT/SIDT Store Global/Interrupt Descriptor Table Register 397
SGDTW/SGDTD/SIDTW/SIDTD Store Global/Interrupt

Descriptor Table Register with WORD/DWORD Operand 399
SHLD Double Precision Shift LEftcccoveieieiininiieeeeeen 400
SHRD Double Precision Shift Rightcccceevivevienicveeceee, 402
SLDT Store Local Descriptor Table Register........cccvvvevvvvceviinnnns 404
SMSW Store Machine StatuS WOord..........ccecveeveiiennneneenenens 405
STC Set Carry Flagccooveeeee e e 406
STD Set Direction Flagcccovevieeieeee e 407
STl SetInterrupt Flag......coevoee e 408
STOS/STOSB/STOSW/STOSD Store String Data..........ccccveveee.. 409
STR Store Task REQISLENcoviriieiierieeieeee e 411
SUB Integer SUDIFraCtioN.coveiieerienie e 412
TEST Logical COMPAIE.......cocuvrieiiriiiienieeie e 414
VERR/VERW Verify a Segment for Reading or Writing............. 416
WAIT Wait until BUSY# PinisInactive (HIGH)c.ccoceeenee. 418
WBINVD Write Back And Invalidate Data Cache

(not available on Intel 386 Or 376 ProCeSSOrsS)coeeeereervereeennes 419
XADD Exchange Add (not available on Intel386 or

376 PIrOCESSOIS) ..veeuveeveesieesteesieesie it et et et et et e b e sseesaesnnesanas 420
XCHG Exchange Register/Memory with Registerc.ce..... 422
XLAT/XLATB Table Look-up Translationc.ccccceveeeeenennene 424
XOR Logical EXCIUSIVE OR.......c.cocuiiiieiiiieiisiieie e 426

ASM 386 Assembly L anguage Reference Contents 13

14

Floating-Point Instructions

Floating-point Coprocessor ArChiteCtureccooeeveeeeieeieeneeiee e
Floating-PoOiNt SLACKccveviieieiie e
ENVITONMENT.....ctiiiecie e st sreesreens
SEAUS WOT......oveeiieieeie ettt
100011 £ Y1V o o SRR
I AT (o ST
Operation LOocator FOrMAaLS........covveiereeiieneeie e see e sieesie e
Floating-point Coprocessor Data FOrmats..........ccovvveevvieeneneseenennes
COProceSSOr OPErAtiONc..viviiiieriierieeiesie s eieste e e sre e e eseessesseesseeseeenes
NUMENTC PrOCESSING....civviieiereieiieiisiesieeie e see e eteseesseesseesseesseeneeenes
Overview of the Floating-point Coprocessor Instruction Set...........c.........
Data Transfer INSrUCHIONScuevvveieeie e
CoNStant INSLIUCLIONS........oivieiieiiiiesieieeee s
AlQEDraic INSIUCLIONS.........cooiviecic e
Comparison INSITUCHIONS.........ccovieiie e e
Transcendental INSIFUCLIONScovviieiiiiese e
Coprocessor Control INStrUCtiONS..........cceecveeceeiiee e
Floating-point Coprocessor Instruction Set Reference........cccccvvceeveeveennen,
How to Read the Instruction Set Reference Pages.........ccccevvvevvevvecnnnns
(@] oTeo o (=X @Xo] 111511
INSLrUCtiON COlUMIN ..ot e
ClOCKS COIUMNS. ..ottt e
Description COlUMN........c.oeiiierie e ee e
DiSCUSSION SECLION....ccuuiiiiiiiieiieiisiie et
EXCEPLIONS SECLIONveeeiee e
How to LOOK Up @an INSLIUCLIONcccvvviecree e
F2XM1 ComputeY = 2X - 1...ioioiiiicieeceeeceeeereeece e,
FABS ADSOIUtE VAIUE........ooiiiieiieii s
FADD/FADDP Real Addition..........ccoooviiiniiniinienee e
FBLD BCD Load tO REalcceveeerriiieesecie e
FBSTP BCD Store and POPcoceeveeiieeiienieenieneeee e
FCHS Change Sign of Real Number.........ccoovvveniniininencen
FCLEX/FNCLEX Clear Floating-point Coprocessor Exceptions
FCOM/FCOMP/FCOMPP Compare Real Numbers...................
FCOS CompPUE Y = COS(X) verveerrereerieerierieeniesieeieesieesiesieeseesieens
FDECSTP Decrement Floating-point Stack Pointer

FDIV/FDIVP/FDIVR/FDIVRP Real Divide/Real
REVEISE DIVIUE.ccviiiiiiciee et
FFREE Free Floating-point Stack Entry.........cccoceeininiincncnnen.
FIADD Integer AdtORealccovveriiiiiiiiiee e
FICOM/FICOMP Integer Comparewith Realcccoovreenne

Contents

429
430
431
433
435
438
439
440

446
446
447
448
451
452
453
454
454

455
455
455
456
456
456
457
458
459
460
461
462
463
464
466
467

468
469
470
471

FIDIV/FIDIVR Integer Divideinto Real.........cccocvvviiienecenncnn. 473

FILD Integer Load into REalcccoecvvieieeiiciecece e 474
FIMUL Integer Multiply with Real.........cccooiiiiniiiniieeee 475
FINCSTP Increment Floating-point Stack Pointer 476
FINIT/FNINIT Initialize Floating-point COprocessor................... 477
FIST/FISTP Integer Storefrom Realcccccevvveevvieeiinciienn, 479
FISUB/FISUBR Integer Subtract from Realcccccevveveiennnne. 480
FLD Load RE8l......cceiieiiiirie st 481
FLDCW Load Floating-point Coprocessor Control Word............ 482
FLDENV Load Floating-point Coprocessor Environment............ 483
FLDcon Load Real Constantccccceveeeeeeienenienenesesesee e 484
FMUL/FMULP Multiply Realccoeieieieeeeeeee e 485
FNOP NO OPErationocveiiieiiieiesiesieeeesieesieesieses e seeeneesseeens 486
FPATAN Compute R = Partial Arctangentccoeceveveeeeneneene. 487
FPREM/FPREM1 Partial Remainder..........ccccevevvneneneneneeeeenn 489
FPTAN ComputeY = Partial Tan(X) ..ccccevvvevieeiecvee e 492
FRNDINT RouNd to INtEQENccvveeeeeecier et 493
FRSTOR Restore Floating-point Coprocessor Machine State 494
FSAVE/FNSAVE Save Floating-point Coprocessor

MBCHINE SEALEeeeeriireireeeee e s 495
FSCALE ScaleExponent of Realcccccveevcvevee e, 499
FSETPM Set Protected MOdE.........ccevvereeeieeeeese e 500
FSIN Compute Y = SIN(X) .eoceeiereieereeseeses e e s seeesee e 501
FSINCOS ComputeY =Sin(X) andY = Cos(X) .cccceevrvvrrerrvnrnn. 502
FSQRT SQUar€ ROOL........ccoiceieeiiieie e 503
FST/FSTP Store Real/Store Real and Pop........cccccccvvcveveeieeeninne, 504
FSTCW/FNSTCW Store Floating-point Coprocessor

COoNtrol WOT.......ooiiieriniisieeeee e 505
FSTENV/FNSTENV Store Floating-point Coprocessor

ENVIFONMENT ... 506
FSTSW/FNSTSW Store Floating-point Coprocessor Status Word 507
FSUB/FSUBP/FSUBR/FSUBRP Subtract Redl...........cccveeeenieenne 508
FTST Test Real (Compareto Zer0)ooceevveveereereenieeiesesvenienneas 509
FUCOM/FUCOM P/FUCOM PP Unordered Comparison of

RE8I NUMDEISviicieeeeee e 510
FWAIT Wait for Floating-point Operation Complete.................. 512
FXAM Examine Floating-point Stack TOPccceeverereenienennene 513
FXCH Exchange Real Numbersin Stack.........c.cceoovveeneiienieniens 514
FXTRACT Extract Exponent and Significand of Redl 515
FYL2X Compute Y * 10goX.....cccoeiiieiiiiiiesice e 517
FYL2XP1 ComputeY * [0go(X + 1) .ccveiiiiiiiiiieecieice 517

ASM 386 Assembly L anguage Reference Contents 15

8

16

Textmacros
OVEIVIBW. ...t
Macro Processingcccvevvvverersennnnns

Macro Callsand Call Patterns...........ccuveeeiieeeeiee e

Macro Processor Scanning Modes and

Macro Expansions...................

Predefined MaCIOS.........cocviiiiiiieece e
MACrO AFQUMENES.ccoiieeeiieee ittt ettt e e e e e nnnee s

Balanced Text........ccoeveeeeeiecvvnnnn.

Delimitersin Call Patterns...........cccveeeeiiiciiieiee s seieeee e

ldentifiers.....ccceveneeneereeee
EXPressions........cccocevveevvenennnenne

Argument EVAlUBLIONScceevviieiieriece e
Predefined Macro REFEIENCEcoocveeieei et

DEFINE MaCro.....ccccoeeeeieeieiiieccceeeee
Bracket Macro.........ccccvveevcvveecccvveeennne,
Escape Macro.......cccceevvviviieenne e,
Comment Macro.........cccceeeeeecvveeneeeenns
METACHAR MaCrocooecvvveeeeennn.
EVAL MaCrO......cuvvveeeeeeeeeieeeeeeeeeeee e,
SET MaCrO....ccovvvveeeee e,

EXIT MaCrO.....ccovvieiiieeeeeeeiiiiceeeeeees

String CompariSON MaCIOSeevveeieeeieeseesieseeesreeseeesreesseeesseesnees

LEN M@aCIO.....ccoevvvviiieeeeeeeeeeerre,
SUBSTRMaCrocccoveeveeeeeeeeeee
MATCH MaCro ...

CONSOIE /O MBEIOS.....cvieieeiieiii sttt
Scanning Modes, Delimiters, and Macro EXpansions.........ccecveveeneenenenn

Normal and Literal Scanning Modes...

Y=o (0 I D 1< F T gL (£
Literal DElIMItErS ..o
Implied Blank Delimiters.........ccoovieeneeiinie e
Identifier DEliMITErS ...

Algorithm for Evaluating Macro Calls

Contents

519
521
521
522
523
525
525
526
527
527
528
529
530
534
535
537
538
539

541
543

545
546

548
549
551
552
552
553
553
555
555
556

9 Codemacros
OVEIVIBW ..ottt e e et e e et e e e e e e eeeaaeaeeeeeeeeees

Codemacro Definitions and Calls........................
Processor Instruction Formatccccevveeeeenneee.
Codemacro ReferenCe..........oooveceeeeeee i,

CODEMACRO DIirective........cccceevererieseenienienns

Formal Parameters and Specifiers........c..cccevennee.
Formal Parameter Modifiers.........cccovveveivennnnne
Formal Parameter Range Specifiers........c.ccco......
PREFIX67 DIT€CHVEccveeeeerieeii e
PREFIX66 DIireCtiVeccccevveiiiiiiieenieneesieenees
SEGFIX DireCtive.....cccoecviiirieneeeeieseenie e

NOSEGFIX DIr€CtiVE.......cevveeeiiieciriiieieee e

WARNING DIir€CtiVe......cvveeeeiieciviiiee e

MODRM DIr€CtiVe.......ccvveeeeeeeiieerieeee e

Datalnitialization DirectiveS.........ccoovveeeeeeecvvnnn.
Record Initialization Directive.........cocceveeeeeuneee.
Using the Dot Operator to Shift Parameters.........

PROCLEN FUNCtion..........ccoovvevienieeneenenee e
Relative Displacement Directives............cceeuee.e.

Matching Codemacro Callsto Their Definitions.........

559
560
562
565
566
568
569
571
572
572
574
575
576
577
578
579
580
581
582
584

A Processor Architecture Summary
Basic Processor FOrmats.........c.coveerereenieeienesieenieens
Data Type FOrmats..........ccocceevcieiiiiieeenieee e
Processor REQISLENS........ccovvevierienieseesee e

General, Segment, Status and Instruction Registers..........ccoouennee.

System ReQIStErS.....ccovveieiecee e

Processor Memory Organizationcccccvveervienenne.

Segment Selection and Effective Address Computation.............cc.ceeee...

Segmented Memory Managementcc.......

Segment DESCIIPLOrS......civeveeie et
Descriptor Address Translation Fields..........
Descriptor Access Rights (AR)ccccevvvennee.

Descriptor Tables and Selector Format.................

Processor Protection, Gate Descriptors, and Task

Protection and Privilege Levels....................

Switches........oouee..

Protected Control Transfers Use Gate Descriptors..........ccccceeeveeee.

Call Gate Descriptor Format............cceeeuvnee.
Task Gate, TSS Descriptor, and TSS Format
I/O Permission Bit Map.......ccccceeeeeviieenneenne,

ASM 386 Assembly L anguage Reference

Contents

588
588
591
591
594
596
597
599
601
602
602
603
604
605
606
607
607
610

PrOCESSOr FIagS. . .cveeitieiiee sttt ettt 612
SEAEUS FIAGS ...eeuveeuiieiiiie ittt et et 613
CATY FIag ..oeveieie e 614
Parity Flag......covioiiiiiie e 615
Auxiliary Carry Flag.....cccoooieenieieeecese e 615
W= ol = o F SRR 615
ST = o S PRR 615
OVEITIOW Flag.....ve et 616
Control and System Control Flags..........ccocvveeiiiieniinieeieseene e 616
Processor Exceptions and INtErTUPLSccvvveeieeiienienie e 618
[dentifying INLEITUPES.ccve et 619
Simultaneous Exceptions and INtErTUPESccvevvieeriveernneneee e 621
Interrupt DeSCriptor Tableccovveieiieiieeceee e 621
Error Codes for EXCEPLIONS........cccuvveriiiieniiiesie e 623
Processor Exception Conditions...........ccccceeiveeneeiiesieesee e siee e 624
Interrupt O -- DIVIAE ErTOr........coovveeecee e 624
Interrupt 1 -- Debug EXCEPLIONS........cccoveviieiieieececsee e 624
INErrupt 2 -- NIM .o 624
Interrupt 3 -- Breakpoint.........ccceeveeeieescee e 624
Interrupt 4 -- OVErflOWcoovveeiee e 625
Interrupt 5 -- Bounds CheCK........cccvvveviiiecie e cee e 625
#UD 6 -- Undefined Opcode (No Error Code)..........cceeevveeveererennen. 625
#NM 7 -- No Math Unit Available (No Error Code)..........ccccveueene 626
#DF 8 -- Double Fault (Zero Error Code).......ccccvvvecevevveseereen e, 626
Interrupt 9 -- Coprocessor Segment OVETUN.........cccveveeeeiveereenn. 626
#TS 10 -- Invalid Task State Segment (Selector Error Code) 627
#NP 11 -- Not Present (Selector Error Code).........cccvevvevveieeninens 627
#SS 12 -- Stack Fault (Selector or Zero Error Code)ccceeueeneee. 628
#GP 13 -- General Protection (Selector or Zero Error Code) 629
#PF 14 -- Page Fault (Type of Fault)........ccccveniinininineeee 630
#MF 16 -- Math Fault (NO Error Code)........ccoveveerenieenenienieennns 631

B Sample Program
SaMPIE SOUICE COUE ...ttt e 633
SAMPIE LISHING c.vviiveeiieeieeie ettt ae e s aesnaesreesreesreens 640
C Keywords And Reserved Words 651

18

Contents

D ASCII Tables 655
E Differences Between ASM386 and ASM286 659
NEW Processor REJISIEN'Sccuuiiiiieiie ettt 659
NEW TNSITUCLIONSvveeeieee ettt e e e e e e e e e e e e e e e s s e ebbaereeeeeeas 659
Processor Paging MeChaniSIMocveiiieieiiisesiese e e 660
Addressing DIiffEreNCEScovieii et 660
DALA TYPES. .ttt ettt ettt e e e e n e e e nneas 661
Bit MaNiPUIBEION ..ottt sttt b e b sreenne s 661
ASSEMDIEF DIFECLIVES ...ttt e e e e s e earaeeas 661
ASSEMDIEr OPEIALOrS.ceivievieiiiieitie st se e te et te e s esseeeesnees 661
ASSEMDBIEr AFTNMELIC ..o e 662
Prefix66 and Prefix67 Codemacro Dir€CtiVES.........cccvveeevvceeieeeeee e, 662
F Differences Between the Intel3860J and 376
Processors 663
G Differences Between the Intel386 and Intel486L]
Processors 667
Index 669
ASM 386 Assembly L anguage Reference Contents 19

Tables

1-1. ASSEMDIEr DIFECHIVES ...t 29
1-2. ProCessor INSLIUCHIONS.vviiieiiesiee et see sttt 31
1-3. Floating-point INSITUCLIONS........civeiiiiiiieie e 36
4-1. Assembler Variable Types and Numerical Value Ranges..........c.ccoveevveneee. 81
4-2. Assembler Data Value Specification RUIES...........cocceevevieeieienecie e 82
5-1. ASSEMDIEr OPEIALOISveeveeiveeiieeie sttt sttt enes 134
5-2. Assembler Operator PreCEUENCE........vivvieeie et 136
5-3. TYPE Operator RESUILS........coiieiiiieiiieie e e 150
5-4. PTR ReSUIt AHITDULES ..o e 155
6-1. External 1/0 INSITUCLIONSoiveiiieie et 172
6-2. Internal Load and StOre INSLrUCLiONS........covveieveerie e 173
6-3. Instructions That Make Uncalculated Value Assignments.........cccoeveeeenne. 174
6-4. Instructions That Make Calculated Value ASSIgnments..........cccceeevereeeens 175
6-5. Data Conversion INSIFUCLIONS..........ccoiirieieerie e 176
6-6. Shift and Rotate INSIrUCLIONSc.eeviiiiiieeee s 176
6-7. Stack Transfer INSIFUCLIONS........ooviiiiiriee s 177
6-8. Processor Instructions That Yield Definitive Flag Values...........cccccueu...... 178
6-9. Conditional Instructions That Test Flag Values..........cccccoeveevniceccie e, 180
6-10. Control Transfer INSIUCLIONS.........cccveviiieii e 180
6-11. Processor Control INSIrUCLIONS........cocuviieriiiir i 180
6-12. Generation of Address and Operand Size PrefiXxes........cccoocvvvevcevieseen e, 187
6-13. 16-Bit Addressing Forms with ModRM Byte in Hexadecimal 190
6-14. 32-Bit Addressing Formswith ModRM Byte in Hexadecimal 191
6-15. 32-Bit Addressing Formswith SIB Bytein Hexadecimalccccccccveueene 192
6-16. Processor Exceptions and INtErrUPLSvveceeieriie e 209
6-17. Operands and Implicit Destinations for DIVccccocvevieevin e, 270
6-18. Operands and Implicit Destinations for IDIV.........cccocvevieeveevivcce e 275
6-19. When IMUL Clears CF and OFccccviiiiriinieieneee e 278
6-20. JIMP Label Types, Operand Sizes and INStructions...........cccovevevveveeseen e, 308
6-21. System Descriptor TYPeSfor LAR.......oociii e 312
6-22. System Descriptor TYPeSfOr LSL.....cocovieiiiiere e 334
7-1. Summary of Real Format Parameters.........coooevveveeiieienenene e 442
7-2. Rounding MethodS..........ooviiiiiiiiee s 444
7-3. Data Transfer INSrUCHIONSooveeeee e e 446
7-4. CoNStANt INSLIUCLIONS......ccuveeiieeeiee e e seee e see e se e e enteesnaeeree e 447
7-5. AlGEDIaiC INSITUCTIONS ...t 448
7-6. Basic Arithmetic Instruction and Operand FOrmMS..........ccooovveeeeeneneenieneens 449
7-7. Comparison INSLIUCHIONS........co.eeiterieitierie et s nreas 451
7-8. Transcendental INStFUCHIONS.coivieiie i e 452
7-9. Processor Control INSIFUCHIONS.coceeriieiie e s 453
7-10. Condition Code after FCOM(P/PP)cciiieiiiriieiinienieieseseeseesee e 465

20 Contents

7-11. Condition Code after FICOM(P)cccceviiieiieeiesie ettt 471

7-12. Floating-point Coprocessor State Following FINIT/FNINIT.........ccccveuenee. 478
7-13. FPATAN Final RESUIT OCLaNt.......c.ccovevieiieiiieie et saeseee e 487
7-14. Condition Code after FPREM/FPREM1..........cccoceiiiiieiiciereececeeie e 490
7-15. Condition Code after FTSTccoviieieiie e see ettt sree 509
7-16. Condition Code after FUCOM (P/PP).........cccoiiiiiiiniiesese e 511
7-17. Condition Code after FXAMcciiiiiiieieee ettt e nee s 513
8-1. Predefined MaCIOScoiviiiiiiiiieicse et 524
8-2. Predefined Macro Call Patterns..........cccovvvcerieienieeseeie e 529
9-1. Codemacro SYyNtax SUMMEIYccvreerreereereeneseesaeseessessesseensesssesses sesees 565
A-1. Default Segment Register Selection RUIES...........cccovvveeieieeie e 597
A-2. Processor EXceptions and INtErTUPLScceveeiieiieiee s 620
C-1L ASSEMDBIEr KEYWOITSvvieiiecciiec ettt et st 652
Cc-2. Assembler RESENVEd WOIAS.........cooiiiieiiiie e e 652
D-1. ASCII Collating SEQUENCEccueeiuieeiee e erieesee e e see et s e ste e nreeen e sneas 655
D-2. ASCII Non-Printable CharaCtersccovvviereneni e 657
Figures

1-1. Template for an Assembler Programccoeeeeeneiieenee e 40
1-2. AN ASM386 EXample Program..........ccoeeceieenieneeneseenieseeseeseessessesseeees 41
4-1. Partial Record Definition Template.........cccvveeveiiinieiineceseee e 101
5-1. Effective Address CalCulation...........cceeiieenieiese e e 164
6-1. Instruction ENCoding FOrMaL.........cccuviieieiienie e see e 185
6-2. MOARM and SIB BYte FOrMELS........cccoeieeiiinieniisieie e sie e e 188
6-3. BitOffset for BIT[EAX,21] .ooveciiieiecie ettt sttt s nneas 203
6-4. MemOry Bit INAEXING.......ccouiiiirieiiiiesie e 204
7-1. Floating-point Coprocessor Stack Fields.......ccoocviviveiiiiienennceee e 430
7-2. 16-Dit ENVIFONMENTS......oiiiiiiiiiiieiiieii ettt 432
7-3. 32-Dit ENVIFONMENES.iiiiiiieiiieiie ettt sttt see st et s 433
7-4. SLAUS WO FOIMELccuviieieiieiiiiesiiee et 434
7-5. Control WOrd FOIMMEL........ccveiieieiie ettt 436
7-6. Tag WOId FOIMEL......ccivieiieiiic et 438
7-1. 16-bit Opcode, 1P, and Op Environment FOrmats.........ccccocveveeveeneesieennnns 439
7-8. 32-bit Opcode, IP, and OP Environment FOrmats..........cccoceveeveeveeneesneennne. 440
7-9. Dala FOIMELS......e ettt e bbb 441
7-10. Floating-point Coprocessor Machine State Layout after FSAVE................. 497
9-1. Instruction ENcoding FOrmMatccvevveiieeiee s e 562
9-2. MOodRM and SIB BYte FOIMALS.......cccceeieerieeiriesieerieesteeseee e snee e e 563
A-1. Fundamental Data TYPES.....ccveeieririeeeieese e seeste e sre e see et sae e 588
A-2. Processor Data Types and Storage FOrmatS........ccecveveeicieeieeseeseesee e 589
A-3. General, Segment, Status, and Instruction RegiSters........cccocevvevvveevveecveennen, 592
A-4. Processor Stack with Stack Frame..........coccoovveenennnnereneeseeee s 593

ASM 386 Assembly L anguage Reference Contents 21

Figures (continued)

A-5.
A-6.
A-T7.
A-8.
A-9

A-10.
A-11.
A-12.
A-13.
A-14.
A-15.
A-16.
A-17.
A-18.
A-19.
A-20.
A-21.
A-22.

G-1L
G-2
G-3.

22

System Control Registers..................

Memory Segmentation Model for ASM386 Programs..........cccceeeveveeennenn

Effective Address Calculation...........

Processor Address Translation OVEIVIEW...........covveicvereiiee et
Segment Address Trandlation in aPaged System.........cccceevvvveeieveenenens

General Segment Descriptor Formats

SElECLON FOMMAL......eieeieieiiteeee et r
Processor Privilege Check for Data ACCESS........cvvveveieenienieeinieseeseenee e

Call Gate Descriptor Format..............
Task Gate Descriptor Format.............

TSS Descriptor Format for 32-bit TSS........ccceviiinieieseese e

General Segment Descriptor Formats
/O Address Bit Mapccceeveeennne

Processor EFLAGS Register...............

Status FlagS FOIMAL..........coiiieiiiccie et e e

Control Flagsand IOPL Format.........

Interrupt Descriptor Table and ReQIStEr........ccevcveeieiiieieeseecee e

IDT Gate Descriptors.......ccceveevveennen.
Intel 486 Processor Control Registers.

Intel 486 Processor Page Table/Directory Entry Formatcccccevcevvnenen.

Intel 486 Processor EFLAGS Register

Contents

594
596
598
599
600
601
603
605
607
607
608
609
611
612
613
616
621
622
669
669
670

Introduction

About This Manual

ASM 386 supports the Pentiume and Intel486™ microprocessors and the entire
Intel386™ family, including the Intel 386, Intel386 SX, and 376 microprocessors, as
well asthe Intel287™, Intel387™ and Intel 387 SX floating-point coprocessors.
Throughout this manual, the word "processor” refers to any of the above
microprocessors and the words "floating-point coprocessor” refer to any of the
above coprocessors, as well as the Pentium and Intel486 processors' built-in
floating-point functions.

Thismanual is areference for the ASM 386 assembly language. It assumes that
you are familiar with assembly language programming and 8086/286/1ntel 386
processor architecture. Read Appendix A if you are already familiar with the
8086/286 processor architecture(s). If you aren't, see the 80386 Programmer's
Reference Manual.

About This Chapter

This chapter introduces the assembly language. It has three major sections:
* Lexical Elements

This section describes the assembler character set, tokens, separators,
identifiers, comments, and the difference between source file lines and logical
statement lines.

e Statements

This section introduces the assembler directives, processor instruction set, and
floating-point instruction set.

e Program Structure

This section provides atemplate for assembler programs together with asimple
example program (see Appendix B for another example program). It
summarizes the essential parts of every ASM 386 program.

ASM 386 Assembly L anguage Reference Chapter 1 23

Lexical Elements

This section describes the lexical elements of the assembly language, except for its
keywords and reserved words.

Seealso: Keywords and reserved words, Appendix C

Character Set

The assembler character set is a subset of the ASCII character set. Each character
in asource file should be one of the following:

Alphanumerics: ABCDEFCGHI JKLMNOPQRSTUVWKYZ
abcdef ghi j kl mopqgr st uvwxyz
0123456789
Special Characters: + - * / () [1 <>; ' . " ?2 @% &

Logical Delimiters: space tab carriage return line feed

If aprogram contains any character that is not in the preceding set, the assembler
treats the character as alogical space.

Uppercase and lowercase letters are not distinguished from each other except in
character strings. For example, xyz and XYZ are interchangeable, but 'xyz' and
'XYZ' are not equivalent character strings.

The special characters and combinations of special characters have particular
meanings in a program, as described throughout this manual.

Seealso: ASCII character set, Appendix D

Tokens and Separators

24

A token is the smallest meaningful unit of a source program, much as words are the
smallest meaningful units of asentence. A token is one of the following:

* Anend of statement

* A delimiter

* Anidentifier

* A constant

* Anassembler keyword or reserved word

A separator that isalogical space or adelimiter must be specified between two
adjacent tokens that are identifiers, constants, keywords, and/or reserved words.
The most commonly used separator is the space character.

Chapter 1 Introduction

The end of statement token must be specified between two adjacent statements.
The most commonly used statement terminator is the carriage_return/line_feed
character combination.

Seealso: Constants, Chapter 4
keywords and reserved words, Appendix C

Logical Spaces

Any unbroken sequence of spaces can be used wherever a single space character is
valid. Horizontal tabs are also used as token separators. The assembler interprets
horizontal tabs asasingle logical space. However, tabs are reproduced as multiple

space charactersin the print (listing) file to maintain the appearance of the source
file.

See also: Print file, ASM386 Macro Assembler Operating Instructions

Logical spaces may not be specified within tokens such asidentifiers, constants,
keywords, or reserved words. The assembler treats any invalid character(s) in the
context of a source file as a separator.

Delimiters

Like logical spaces, delimiters mark the end of atoken, but each delimiter has a
different special meaning. Some examples are commas and colons.

When adelimiter is present, alogical space between two tokens need not be

specified. However, extra space or tab characters often make programs easier to
read.

Delimiters are described in context throughout this manual .

ASM 386 Assembly L anguage Reference Chapter 1 25

Identifiers

Anidentifier is aname for a programmer-defined entity such as a segment,
variable, label, or constant. Valid identifiers conform to the following rules:

* Theinitial character must be aletter (A...Z or a...z) or one of the following
special characters:

? A question mark (ASCII value: 3FH)
@ Anatsign (ASCII value: 40H)
An underscore (ASCII value: 5FH)

* Theremaining characters may be letters, digits (0..9), and the preceding
special characters. Separators may not be specified within identifiers.

* Anidentifier may be up to 255 charactersin length; it is considered unique
only up to 31 characters.

» Every identifier within a program modul e represents one and only one entity.
A named entity is accessible from anywhere in the module when it is
referenced by name. The assembler does not have identifier scope rules that
allow you to specify the same name for two distinct entities in different
contexts.

Continued Statements and Comments

26

An assembler statement usually occupies asingle sourcefileline. A sourcefile
lineis a sequence of characters ended by avalid line delimiter:

» Either aline feed character
* Or, acarriage_return/line_feed combination

However, the end of linein a source file is not necessarily the logical end of a
statement. Assembler statements do terminate with aline feed or
carriage_return/line_feed combination, but logical statements can extend over
severa lines by using the continuation character (&).

The end of line in a source file always terminates a comment. The semicolon (;) is
theinitial character of a comment.

Chapter 1 Introduction

Valid comments and statements conform to the following rules:

* A comment begins with a semicolon (;) and ends when the line that contains it
isterminated. The assembler ignores comments.

* A statement or comment may be continued on subsequent continuation lines.
Thefirst character following the line terminator that is not alogical space must
be an ampersand (&).

e Statements and comments may extend over many source file linesif they
conform to the following:

— Symbols (such as identifiers, keywords, and reserved words) cannot be
broken across continuation lines.

— Character strings must be closed with an apostrophe on one line and
reopened with an apostrophe on a subsequent continuation line, with an
intervening comma (,) after the ampersand. Space and tab characters
within a character string are significant; they are not treated as logical
spaces.

— If acomment is continued, the first character following the ampersand that
isnot alogical space must be a semicolon (;).

Examples

The following examples illustrate the difference between the end of a sourcefile
line and the logical end of an assembler statement. The notation <cr_If> represents
acarriage_return/line_feed. Both examples are equivalent.

1. Thisexample has asingle statement on asingle source fileline. The end of
the source file line and the logical end of the statement are the same.

; 1 2 3 4<cr _| f>

; 234567890123456789012345678901234567890<cr _| f>

<cr_If> ; interpreted as |ogical space
MOV EAX, FOO<cr _|f>

ASM 386 Assembly L anguage Reference Chapter 1 27

2. This example has many ends of linesin the sourcefile, but it has only one
logical end of statement.

; 1 2 3 4<cr _| f>

; 234567890123456789012345678901234567890<cr _| f>
<cr_If> ; interpreted as |ogical space
MOV ; this ASM386<cr _|f>

& EAX, ; statenent extends<cr_|f>
& ;o <cr_lf>

& ;o <cr_|f>

& ; over<cr_|f>

& ; several lines<cr_|If>

& FOO ; statenent ends here<cr_|f>
<cr_If>

28 Chapter 1 Introduction

Assembler Statements

Assembler programs are constructed from statements. They may also contain
definitions of and calls to programmer-defined macros. There are two kinds of
statements: directives and instructions.

See also:

Programmer-defined macros, Chapter 8

Assembler Directives

Directive statements tell the assembler to perform certain operations. Assembler
directives determine the organization of a program's data, stack, and code
segments, and they affect almost every opcode that the assembler generates.

Table 1-1 lists the assembler directives by functional categories.

Table 1-1. Assembler Directives

SEGMENT..ENDS

STACKSEG

ASSUME

Segmentation Directives

Defines a program's logical segments and specifies a code or
data segment's attributes (access protection, whether to combine
with other logical segments, and whether to use 32- or 16-bit
addressing)

Defines stack segments and allocates a specified number of
bytes per module to the run-time stack

Informs the assembler of the expected run-time contents of the
processor segment registers

NAME

END

PUBLIC

EXTRN

COMM

Program Linkage Directives

Specifies a source module's unique name

Required last statement in module that terminates assembly; in
main module only, initializes CS and may also initialize DS and
SS segment registers

Specifies that a named symbol is accessible from another
program module

Specifies that a named PUBLIC symbol in another program
module can be accessed in this module

Specifies that a named symbol is to be allocated common and
accessible data storage with COMM or EXTRN symbols in other
program modules or specifies that a named PUBLIC symbol can
be accessed in this module

continued

ASM 386 Assembly L anguage Reference Chapter 1

29

Table 1-1. Assembler Directives (continued)

Data Allocation and Type Definition Directives

DBIT Allocates storage for and may initialize values of BIT-type variables

DB Allocates storage for and may initialize values of BYTE-type variables

DW Allocates (2 bytes) storage for and may initialize values of WORD-type
variables

DD Allocates (4 bytes) storage for and may initialize values of DWORD- type
variables

DP Allocates (6 bytes) storage for and may initialize values of PWORD- type
variables

DQ Allocates (8 bytes) storage for and may initialize values of QWORD- type
variables

DT Allocates (10 bytes) storage for and may initialize values of TBYTE- type
variables

Data Allocation and Type Definition Directives

RECORD Names a programmer-defined type that is a bit-encoded data structure
(1 to 4 bytes long)

STRUC Names a programmer-defined type with named fields; each field may be
any of the predefined types

DUP Allocates contiguous storage for a specified number of variables of a

single type and may initialize their values

Procedure and Label Definition Directives

labelname: Defines label within current code segment; assembler generates an
intrasegment return of type NEAR

PROC..ENDP Defines labeled sequence of instructions (assembler generates an
intrasegment return) of type NEAR or (assembler generates an
intersegment return) of type FAR

LABEL Defines label of a specified type (NEAR, FAR, or a declared variable's
type)

Location Counter Symbol and Management Directives

$ Represents location counter (location of the statement currently being
assembled)

ORG Sets $ to specified value

EVEN Sets $ for the following code or data to the next dword or word

ALIGN Sets $ to the next location for code or data that is evenly divisible by the

specified number.

Symbol Equating and Purging Directives

EQU Defines name (alias) for keyword reserved word, or program symbol
PURGE Instructs assembler to delete specified symbol(s)

See also: Chapters 1 through 4 for more information about each directivein
Table 1-1
codemacro directives, Chapter 9

30 Chapter 1 Introduction

Assembler Instructions

The assembler trans ates assembl er instruction statements into opcodes, operands,
and addresses. The machine code causes the processor and/or floating-point
coprocessor to perform particular operations on (and with) the program's data.
There are two kinds of assembler instructions: processor instructions and floating-
point instructions. The floating-point instructions may be emulated on the
processor or they may execute on a floating-point coprocessor.

Tables 1-2 and 1-3 list the assembler instructions by functional category. See
Table 1-2 for the processor instruction set and Table 1-3 for the floating-point
instruction set.

Table 1-2. Processor Instructions

Data Transfer Instructions

MOV Move data

MOVZX Move with zero extend

MOVSX Move with sign extend

IN Input from port

ouT Output to port

XCHG Exchange register/memory with register

CMPXCHG Compare and exchange (not available on Intel386 or 376 processors)

XLAT/XLATB Table look-up translation

LEA
LDS
LES
LFS
LGS
LSS

Address Transfer Instructions

Load effective address offset

Load full pointer into DS:register
Load full pointer into ES:register
Load full pointer into FS:register
Load full pointer into GS:register
Load full pointer into SS:register

continued

ASM 386 Assembly L anguage Reference Chapter 1 31

Table 1-2. Processor Instructions (continued)

Logic Instructions

NOT One's complement negation

AND Logical AND

OR Logical (inclusive) OR

XOR Logical (exclusive) OR

TEST Logical compare (non-destructive AND)

CMP Compare operands

SHL Shift logical left

SHR Shift logical right

SAL Shift arithmetic left

SAR Shift arithmetic right

SHLD Shift double precision left

SHRD Shift double precision right

ROL Rotate left

ROR Rotate right

RCL Rotate through carry flag (CF) left

RCR Rotate through carry flag (CF) right

BSWAP Byte swap (not available on Intel386 or 376 processors)
Stack Instructions

ENTER Make stack frame for procedure's local variables
LEAVE High-level procedure exit

PUSH Push operand onto the stack

POP Pop operand from the stack

PUSHFD/PUSHF Push EFLAGS or FLAGS register onto stack
POPFD/POPF Pop top of stack into EFLAGS or FLAGS register
PUSHAD/PUSHA Push all (32- or 16-bit) general registers onto the stack
POPAD/POPA Pop stack into all (32- or 16-bit) general registers
Flag Instructions

STC Set carry flag (CF)

CLC Clear carry flag

CMC Complement carry flag

STD Set direction flag (DF)

CLD Clear direction flag

STI Set interrupt flag (IF)

CLI Clear interrupt flag

LAHF Load status flags into AH

SAHF Store AH into status flags

SETcc Set byte on (status flag) condition

32 Chapter 1

continued

Introduction

Table 1-2. Processor Instructions (continued)

Mathematical Instructions

ADC Add with carry

ADD Add

DEC Decrement by 1

DIV Unsigned divide

IDIV Signed divide

IMUL Signed multiply

INC Increment by 1

MUL Unsigned multiply

NEG Two's complement negation
SUB Integer subtraction

XADD Exchange and add (not available on Intel386 or 376 processors)
Data Adjustment Instructions

AAA ASCII adjust AL after addition
AAS ASCII adjust AL after subtraction
DAA Decimal adjust AL after addition
DAS Decimal adjust AL after subtraction
AAD ASCII adjust AX before division
AAM ASCII adjust AX after multiply
AAD ASCII adjust AX before division
cBwW Convert byte to word

CwD Convert word to dword

CWDE Convert word to dword extended
CDQ Convert dword to quadword
String Instructions

MOVS Move string to string

CMPS Compare string operands

SCAS Compare (scan) string data
LODS Load string data

STOS Store string data

INS Input from port to string

OouUTSs Output string to port

Bit Test and Scan Instructions

BT Bit test

BTS Bit test and set

BTR Bit test and reset (to 0)

BTC Bit test and complement

BSF Bit scan forward

BSR Bit scan reverse

ASM 386 Assembly L anguage Reference

Chapter 1

continued

33

Table 1-2. Processor Instructions (continued)

Control Transfer Instructions

Jcc Jump if status flag condition is met
JMP Jump unconditionally

CALL Call procedure

RET Return from procedure

LOOP Loop with (E)CX counter

LOOPcond Loop with (E)CX counter AND condition
Interrupt Instructions

INT Call to interrupt procedure

INTO Call to interrupt procedure if overflow
IRET Interrupt return (16-bits)

IRETD Interrupt return (32-bits)

Processor Control

HLT Halt

WAIT Wait until BUSY# is inactive

Protected Mode Control Instructions

LGDT/LGDTW/LGDTD

LIDT/LIDTW/LIDTD

LLDT

LTR

LMSW
SGDT/SGDTW/SGDTD
SIDT/SIDTW/SIDTD
SLDT

STR

SMSW

ARPL

CLTS

Load global descriptor table register (GDTR) using 16- or 32-bit
operand

Load interrupt descriptor table register (IDTR) using 16- or 32-bit
operand

Load local descriptor table (LDT) register (LDTR)

Load task register (TR)

Load machine status word (MSW)

Store GDTR using 16- or 32-bit operand

Store IDTR using 16- or 32-bit operand

Store local descriptor table register

Store task register

Store machine status word

Adjust requesting privilege level (RPL) field of selector

Clear task switch (TS) flag in CRO register

Parameter Verification Instructions

BOUND
LAR
LSL
VERR
VERW

Check array index against bounds
Load access rights

Load segment limit

Verify a segment for reading
Verify a segment for writing

34 Chapter 1

continued

Introduction

Table 1-2. Processor Instructions (continued)

Cache Control Instructions

INVLPG Invalidate paging cache entry (not available on Intel386 or 376
processors)

INVD Invalidate data cache (not available on Intel386 or 376 processors)

WBINVD Write back and invalidate data cache (not available on Intel386 or 376
processors)

No Operation Instruction

NOP No operation (fills 1 byte and increments instruction pointer)

Instruction Prefixes

LOCK Assert BUS LOCK# signal prefix

REP Repeat following string operation

See also: Chapter 6 for an overview of the processor instruction set and for
detailed information about each processor instruction

ASM 386 Assembly L anguage Reference Chapter 1 35

Table 1-3. Floating-point Instructions

Data Transfer Instructions

FLD Load real

FST Store real

FSTP Store real and pop floating-point stack
FXCH Exchange stack elements

FILD Load integer

FIST Store integer

FISTP Store integer and pop floating-point stack
FBLD Load packed decimal real

FBSTP Store packed decimal real

Load Internal Constant Instructions

FLDZ Load +0.0

FLD1 Load 1.0

FLDPI Load 1t

FLDL2T Load log,10

FLDL2E Load log,e

FLDLG2 Load log,,2

FLDLN2 Load log 2

Comparison Instructions

FCOM Compare real
FCOMP Compare real and pop floating-point stack
FCOMPP Compare real and pop twice
FUCOM Unordered compare real (not available on Intel287 floating-point
coprocessor)
FUCOMP Unordered compare real and pop floating-point stack (not available on
Intel287 floating-point coprocessor)
FUCOMPP Unordered compare real and pop twice (not available on Intel287 floating-
point coprocessor)
FICOM Compare integer
FICOMP Compare integer and pop floating-point stack
FTST Test (compare to zero)
FXAM Examine
continued
36 Chapter 1 Introduction

Table 1-3. Floating-point Instructions (continued)

Transcendental Instructions

FSIN Sine (not available on Intel287 floating-point coprocessor)

FCOS Cosine (not available on Intel287 floating-point coprocessor)

FSINCOS Sine and cosine (not available on Intel287 floating-point coprocessor)

FPTAN Partial tangent

FPATAN Partial arctangent

F2XM1 2x-1

FYL2X Y *log? X

FYL2XP1 Y *log? (X + 1)

Algebraic Instructions

FADD Add real

FADDP Add real and pop floating-point stack

FIADD Add integer

FSUB Subtract real

FSUBP Subtract real and pop floating-point stack

FSUBR Subtract real reversed

FSUBRP Subtract real reversed and pop floating-point stack

FISUB Subtract integer

FISUBR Subtract integer reversed

FMUL Multiply real

FMULP Multiply real and pop

FIMUL Multiply integer

FDIV Divide real

Algebraic Instructions

FDIVP Divide real and pop floating-point stack

FDIVR Divide real reversed

FDIVRP Divide real reversed and pop floating-point stack

FIDIV Divide integer

FIDIVR Divide integer reversed

FSQRT Square root

FSCALE Scale

FPREM Partial remainder

FPREM1 IEEE std.754 partial remainder (not available on Intel287 floating-point
coprocessor)

FRNDINT Round real to integer

FXTRACT Extract exponent and significand

FABS Absolute value

FCHS Change sign

continued

ASM 386 Assembly L anguage Reference Chapter 1 37

Table 1-3. Floating-point Instructions (continued)

Processor Control Instructions

FINIT/FNINIT Initialize floating-point coprocessor
FSTCW/FNSTCW Store control word

FLDCW Load control word

FSTSW/FNSTSW Store status word

FCLEX/FNCLEX Clear exceptions

FSTENV/FNSTENV Store environment

FLDENV Load environment

FSAVE/FNSAVE Store machine state

FRSTOR Restore machine state

FINCSTP Increment floating-point stack pointer
FDECSTP Decrement floating-point stack pointer

FFREE Free (empty) stack top element

FNOP No operation

FSETPM Set (Intel287) protected mode (Otherwise FNOP)
FWAIT Wait (alternate specification of processor WAIT)

See also: Chapter 7 for detailed information about each assembler floating-
point instruction

Specifying Assembler Statements
The general syntax for assembler directive statementsis similar to that for
instructions.
Specifying Directive Statements
Assembler directive statements have the following general syntax:
[nane] di rective[argunent [,...]]
Where:
name isavalid identifier.
di rective isoneof thedirectiveslisted in Table 1-1.
argunment isamodifier or value to be associated with nane.

Each assembler directive hasits own set and/or forms of argument(s). Some
directives have no valid arguments in the context of a program. Some have a
restricted set of arguments that are reserved words. Others accept constant values
and constant expressions.

Seealso: Chapters 2 through 4 for more detailed information about each
directivein Table 1-1

38 Chapter 1 Introduction

Specifying Instruction Statements

Assembler instruction statements have the following general syntax:

[l abel:][prefix] menonic[argunent[,...]]
Where:
I abel is a unique-to-the-module identifier that defines alabel.
prefix isaprocessor instruction prefix (LOCK or REP).

menpni ¢ isaprocessor or floating-point instruction (listed in Table 1-2 or 1-3)
or it is a programmer-defined codemacro.

argunent isan operand.

Some instructions have no operands; others require one, two, or three operands.
Some operands may be expressions. The general form of an instruction with
operands is one of the following:

menoni ¢ src
where the execution result may be stored either in the source itself
(src) orinanimplicit location (usually aregister or the floating-point
stack top element ST).

menoni ¢ dest, src
where the execution result is stored either in the destination (dest) or
in an implicit location; the instruction's operation does not change the
source operand.

Only afew processor instructions have three operands. For floating-point
instructions, one operand is usually the stack top ST(0).

Seealso: Programmer-defined codemacros, Chapter 9
expressions, Chapter 5
instruction operands, Chapter 6 (Table 1-2) and Chapter 7 (Table 1-3)

ASM 386 Assembly L anguage Reference Chapter 1 39

Assembler Program Structure

Figure 1-1 illustrates the essential parts of an assembler program that is contained
in asingle source module and intended to run in processor protected mode.
Figure 1-2 illustrates such an example program.

The following subsections explain what each assembler statement in Figure 1-1
does.

: This is a comment. Tokens in bold face can sel dom

; be omtted fromany non-trivial assenbler program

; Those in type like TH' S are strongly recomended for

; every assenbl er

; program and sone are required by all but the sinplest.
NAMVE MAI N_MODULE

; MAIN_MODULE is programrer defined for this nodul e.
PROG_STACK STACKSEG 500

; PROG_STACK is programmer defined for progranmis stack

; segnment and 500 is nunber of bytes in segnent.
PROG_DATA SEGVENT RW

; PROG_DATA is programer defined for program s data

; segment and RW (read/wite) is this segnent's

; access attribute (ReadOnly or ExecuteRead al so possible).

; Program data must be defined and may be initialized here
PROG_DATA ENDS
PROG_CODE SEGVENT ER

; PROG_CODE is programrer defined for program s code

; segnment and ER (execute/read) is this segnent's

; access attribute (ExecuteOnly al so possible).
ASSUME DS: PROG_DATA

; Tells assenbl er which processor segment register

; points to programi s data segnment for the follow ng
MAI N:

; code. MAIN is progranmer defined | abel specifying

; programentry point (execution begins here). Assenbler

; instruction statenents begin at |abel (MAIN) and nust

; be coded between SEGMVENT..ENDS. DS, SS, ES, FS and GS

; segnent register initializations my be coded here too.
PROG_CODE ENDS ; Code segnment ends.
END CS: MAI N, DS: PROG_DATA, SS: PROG_STACK

Figure 1-1. Template for an Assembler Program

40 Chapter 1 Introduction

NAME Directive

Assembler programs with more than one source module must specify a unique

name for each module. The assembler will assign the module identifier
ANONYMOUS if the NAMVE statement is omitted. A multi-module program cannot be

combined and located by the system utilities if two modules have the same name.

See also:

NAVE TOY_MAI N MODULE
PROG_STACK STACKSEG 200
EXTRN EXI T: FAR
PROG_DATA SEGVENT RW

VARL DB 0O
VAR2 DD 0
VAR3 DD 1000

PROG_DATA ENDS
PROG_CODE SEGMVENT ER USE32
ASSUME DS: PROG_DATA

MAI N: I NC VARL
PUSH EAX
MOV EAX, VAR2
ADD EAX, 500
MOV VAR2, EAX
POP EAX

MOV ECX, VAR3
SUB ECX, VAR2

JNZ MAIN

CALL EXIT
PROG_CODE ENDS

NANE directive, Chapter 3

i ncrenent counter
store EAX on stack
move VAR2 val ue to EAX

store sumin VAR2

restore original EAX val ue
from stack

move VAR3 to ECX

subtract 500

from 1000 i n ECX

junp to MAIN i f subtraction
result in ECX not zero and
end | oop when result =0

END MAI N, DS: PROG_DATA, SS: PROG_STACK
Figure 1-2. An ASM 386 Example Program

ASM 386 Assembly L anguage Reference

Chapter 1

41

STACKSEG Directive

Any assembler program that allocates data dynamically on a stack should define a
named stack segment with a STACKSEG statement.

In assembler programs, source modules share a single stack segment. STACKSEG
must be specified with the same name in each source module that references data
on the stack. In such a source module, the STACKSEG statement specifies the
number of bytes that the module will allocate on the to-be-combined stack segment
for the whole program.

For stack segments, the assembler determines the use attribute. A stack segment's
use attribute determines the upper limit for offsets within the segment; it also
determines whether the ESP or SP register is used for implicit stack references.

Seealso: STACKSEGdirective, Chapter 2
processor stack architecture, Appendix A

SEGMENT Directive for Data Segments

Assembler data must be defined within a SEGVENT. . ENDS. This directive
specifies at least a name for one program (or module) data segment; it may also
specify access, use, and combine attributes for the named data segment.

Assembler source modules may define any number of named data segments with
SEGMVENT. . ENDS. The processor DS (default), ES, FS, and GS segment registers
provide access to data segments. At most four named data segments are accessible
at any given point in amodule.

Each data segment within a module must have a distinct name. The assembler
assigns the RW (read/write access) attribute unless RO or ER is specified for the
segment.

The assembler assigns the USE32 (use 32-bit addressing) attribute for the whole
module by default unless USE16 is specified as an assembler control. Segments
within the module may have individually specified USE attributes. When a USE
attribute is defined on a segment, it remains in effect throughout that segment. For
all segments, the USE attribute determines the maximum segment size: 4 gigabytes
(2%2- 1) for USE32 and 64K bytes (216 - 1) for USE16.

42 Chapter 1 Introduction

Named data segments may be shared across program source modules only if a
PUBLI C or COMMON combine attribute is specified in the SEGVENT statement. Each
data segment that is shared among modules must have the same name with the
same use and combine attributes and compatible access attributes.

Seealso: Processor registers, memory organization, and access protection
features, Appendix A
SEGVENT directive, Chapter 2
defining shared data entities inside the SEGVENT. . ENDS of multiple
source modules, Chapter 3
defining data (variables, labels, and constants) and specifying
assembler data values within SEGVENT. . ENDS, Chapter 4

SEGMENT Directive for the Code Segment

All assembler instruction statements must be specified within SEGVENT. . ENDS.
This directive specifies at least a name for the module's code segment. It may aso
specify access, use, and combine attributes for the code segment.

The assembler assigns ER (execute/read) access unless EO (execute only) is
specified for the segment. The assembler assigns USE32 (use 32-bit addressing) for
the whole module by default unless USE16 is specified as an assembler control.
When a USE attribute is defined on a segment, it remains in effect throughout that
segment.

The USE attribute of a segment instructs the assembler to generate 32- or 16-bit
(offset) addresses and default lengths for instruction operands. It also determines
the segment's maximum size: 4 gigabytes (2 32 - 1) for USE32 and 64K bytes

(216 - 1) for USE16.

Code segments defined with the same name and specified with the PUBLI C
combine attribute are concatenated into a single code segment. If PUBLI Cis not
specified for amodul€'s code segment, it is non-combinable and must be wholly
contained in a single source module.

ASM 386 Assembly L anguage Reference Chapter 1 43

The code segment of a program's main module must have alabel (MAI N: in
Figures 1-1 and 1-2) at the first executable instruction of the program. The main
modul€'s END statement must specify this label.

See also: END statement, END Directive, in this chapter
Assembler Statements for a summary of the assembler instructions
and directives
SEGVENT. . ENDS directive, including the PUBLI C combine attribute,
Chapter 2
accessing data with address expressions, Chapter 5
Chapters 6 and 7 for detailed information about each assembler
instruction

ASSUME Directive

If no ASSUME statement is specified in an ASM 386 code segment, the assembler
assumes that CS contains the selector of the code segment but that no other
segment register has been loaded. The assembler cannot generate a correct logical
address for a symbolic reference unless it knows which segment register contains
the selector for the symbol's defining segment. The assembler must know the
correct segment register whenever an instruction statement references memory
data. Such references include:

» Symbolic references using the name of avariable, label, or constant as an
operand to an instruction (e.g., ADD EAX, VAR2)

* Non-symbolic references using segment overrides and the PTR operator (e.g.,
ADD EAX, GS: DWORD PTR 24)

Initialize a segment register for each memory segment that is referenced in your
code and specify ASSUME at each point in the source code where the run-time
contents of a segment register will change for subsequent instructions.

See also: Initializing Segment Registers with Instructions, in this chapter
ASSUME directive, Chapter 2
processor segment registers, Appendix A

44 Chapter 1 Introduction

END Directive

The END statement terminates assembly; it must be the last statement in an
ASM386 source module.

The main module's END statement must specify at least the code segment's entry
point label in order to initialize the CS and (E)IP registers. When the program is
loaded, CS:(E)IP points to the entry point label of the code segment. EIP (32-bit
addressing) or IP (16-bit addressing) also points to the (labeled) instruction.

The SS and DS segment registers may also be initialized with the main module's
END statement. If they are, when the program is |oaded:

» SScontainsthe selector for the stack segment. ESP (32-bits) or SP (16-bits)
contains the offset of the first dword (32-bits) or word (16-bits) above the
upper segment limit if the stack segment was defined with STACKSEG, (E)SP
has a value equal to the size of the stack plus 4 (for ESP) or plus 2 (for SP).
(E)SPis0if the stack segment was not defined with STACKSEG.

» DS contains the selector for the data segment.

Note that an explicit MOV reference to the data segment name is not required to
initialize DS to the data segment (see Figure 1-2) when DSis initialized by the END
statement.

The ES, FS, and GS data segment registers cannot be initialized with the main
module's END statement. In non-main modules, segment registers may not be
initialized with the END statement.

See also: END statement, Chapter 3

Initializing Segment Registers with Instructions

Memory data must be accessible if assembler instructions are to operate onit. If all
program modules have a single, shared data segment, specifying ASSUVE

DS: dat asegnane and initializing DS with the main module's END statement
provides the necessary access. Even one-module programs that define more than
one named data segment must initialize the ES, FS, or GS register(s) explicitly in
the code segment.

ASM 386 Assembly L anguage Reference Chapter 1 45

Since each assembler module may define several data segments, individual
modules of a program may have local, as well as shared data segments. But, asthe
program executes, only four data segment registers are available to access memory
data. Thus, the DS, ES, FS, and GS register contents may change within a module
and from module to module. In these cases, specify an ASSUVE statement and
initialize the data segment register(s) before an instruction accesses memory data.

A modul€e's stack segment may also be initialized explicitly in the code segment,
rather than with the (main) modul€e's END statement.

Initializing DS, ES, FS, and GS

The DS, ES, FS, and GS registers may be initialized in four ways in a source
module's code segment:

46

1. By specifying sequential MOV instructions using the data segment name;

The first MOV has a destination operand that is a general register (AX, BX,
CX, DX, Sl, DI, SP, BP) and a source operand that is the name of a data
segment in the module. Avoid specifying SP or BP if the modul e accesses
the stack segment.

The next MOV has a destination operand that is a data segment register
(DS, ES, FS, or GS) and a source operand that is the destination register
specified in the preceding MOV.

2. By specifying sequential MOV instructions and using the SEG operator:

The first MOV has a destination operand that is a general register (AX, BX,
CX, DX, Sl, DI, SP, BP) and a source operand that is a symbol (named
variable, label, or constant) preceded by SEG. The SEG expression
represents the segment base address of the symbol's defining data segment.
Avoid specifying SP or BP if the modul e accesses the stack segment.

See also: SEG, Chapter 5

The next MOV has a destination operand that is a data segment register
(DS, ES, FS, or GS) and a source operand that is the destination register
specified in the preceding MOV.

3. By specifying a MOV instruction with DS, ES, FS, or GS as the destination
operand and an initialized memory location as the source operand.

4. By specifying an LDS, LES, LFS, or LGS instruction with a memory operand
that isa pointer. Do not attempt to load a segment register directly by using a
segment name as a source operand; a segment name is an immediate operand,
not a memory operand.

Chapter 1 Introduction

Examples

1. Thisexampleinitializes ES. ESwill contain the selector of the DATA2
segment after both MOV statements execute.

DATA1 SEGVENT RW

Do ; its data accessed
DATA1 ENDS ; by DS: EAX | ater
DATA2 SEGVENT RW
VAR32 DD 0O
DATA2 ENDS

Do ; nore segnment definitions
MOV BX, DATA2
ASSUME ES: DATA2
MOV ES, BX

2. Thisexampleinitializes FS. FSwill contain the selector of VAR32's defining
data segment after both MOV statements execute. The EXTRN directive
indicates that VAR32 is defined in another source module.

See also: EXTRN, Chapter 3

EXTRN VAR32 DWORD

MOV CX, SEG VAR32
ASSUME FS: SEG VAR32
MOV FS, CX

Initializing SS

The SS (stack segment) register and (E)SP may also be initialized in the code
segment:

1. By specifying sequential instructions, just as for a data segment with SSasthe
destination segment register.

2. By specifying (E)SP as a MOV destination operand and the stack segment name
as the source operand preceded by the STACKSTART operator.

3. By specifying the LSS instruction with a memory operand that is a pointer. Do
not attempt to load a segment register directly by using a segment name as a
source operand; a segment name is an immediate operand, not a memory
operand.

ASM 386 Assembly L anguage Reference Chapter 1 47

(E)SP points to the top of the processor push-down stack. Thisregisteris
referenced implicitly by the processor ENTER, LEAVE, PUSH, POP, PUSHA, POPA,
PUSHF, POPF, CALL and interrupt operations. (E)BP should be used as the stack-
frame base pointer to avoid having to specify SS explicitly for each data access
within a stack frame.

Example

This example uses STACKSTART to initialize (E)SP. A MOV into SS disables
interrupts for one instruction so that (E)SP can beinitialized. After these
instructions execute, (E)SP points to the (d)word above the upper stack segment
limit.

MOV AX, PROG STACK

MOV SS, AX

MOV ESP, STACKSTART PROG_STACK

See also: STACKSTART, Chapter 5

48 Chapter 1 Introduction

Segmentation

This chapter contains three major sections:
* Overview of Segmentation

This section briefly describes processor segmentation, together with the
assembler directives that define and set up access to logical program segments.

» Defining Logical Segments

This section explains the SEGVENT. . ENDS and STACKSEG directives. These
directives define code, data, and stack segments in assembler programs.

e Assuming Segment Access

This section explains the ASSUVE directive. This directive specifies which
segments in an assembler program are accessed by the processor segment
registers at any given point in the program's code.

Overview of Segmentation

The processor addresses 4 gigabytes of physical memory. Processor memory is
segmented. For programmers, processor memory appears to consist of up to six
accessible segments at atime:

» One code segment containing the executable instructions
» One stack segment containing the run-time stack
» Uptofour data segments, each containing part of the data

Assembler program segments are called logical segments, because they represent
logical addresses that must be mapped to processor physical addresses before
program execution.

The maximum size of a program segment depends on which USE attribute is
specified in the source. When USE32 is specified, the maximum size for a segment
is 4 gigabytes. When USEL6 is specified, it is 64K bytes.

See also: Processor memory organization, Appendix A
operand addressing and the USE attribute, Chapters 5 and 6

ASM 386 Assembly L anguage Reference Chapter 2 49

50

At run time, the physical base address of a program segment will be accessed by an
immediate value loaded into a segment register. Thisvalueis called aselector. A
selector points (indirectly in processor protected mode and directly in processor
real address mode) to the physical location of a segment. The processor segment
registers are CS, DS, and SS, which access code, data, and stack segments,
respectively, and ES, FS, and GS, which access additional data segments.

Logical segments are created in an assembler module with the SEGVENT (code and
data) and STACKSEG (stack or stack-and-data) directives. These directives specify
a segment name; this name defines alogical address for the segment. A segment
name can appear in several contexts throughout a program:

* Indatainitiaizations, because it stands for the value of the selector
* In segment register initializations

* In an ASSUME statement, which tells the assembler which segment registers
contain which selectors
Seealso: ASSUME statement, in this chapter
selectors, Chapter 4
data and segment register initializations, Chapter 1

After program code is assembled, the system utilities map assembler program
segments to processor physical addresses. A named segment becomes a sequence
of contiguous physical addresses. A logical segment becomes physically accessible
when the segment name is loaded into a processor segment register during program
execution.

Chapter 2 Segmentation

Defining Code, Data, and Stack Segments

The SEGVENT. . ENDS directive defines an assembler program's code and data
segments. The STACKSEG directive defines the stack (or mixed stack and data)
segment. Both directives specify a name for each logical segment defined in a

program.

Because program segments are named, assembler logical segments need not be
contiguous lines of source code. Within a source module, a named segment can be
closed with ENDS and reopened with another SEGVENT. . that specifies the same
name. Logica segments can also be coded in more than one source module.

See also:

Logical segmentsin source modules, Chapter 3

SEGMENT..ENDS Directive

Syntax

name SEGVENT[access] [use] [conbi ne]

[instructions, directives, and/or data initializations]

nane ENDS

Where:

nane

access

use

conbi ne

isan identifier for the segment; nane must be unique within the
module. nane represents the logical address of the beginning of the
program segment. The segment's contents (specified between
SEGVENT. . ENDS) represent logical addresses that are offsets from the
segment nane.

isan optional RO (read only), EO (execute only), ER (execute and
read), RW (read and write).

iSUSE32 or USE16. If use isnot specified explicitly in the SEGVENT
statement, the segment's USE attribute defaults to that of its nearest
enclosing segment or to that of the module. The overall default for
program modules is USE32.

isunspecified (default), PUBLI C, or COMMON. If neither PUBLI C nor
COMMON is specified for nane, the segment is non-combinable: the
entire segment isin this module and it will not be combined with
segments of the same nane from any other module. However,
separate pieces of a non-combinable segment within amodule will be
combined.

If @ SEGVENT PUBLI C or SEGVENT COMVON directive has been
specified for the segment nane, the conbi ne specification for
segments with the same name in other modules must be the same.

ASM 386 Assembly L anguage Reference Chapter 2 51

Discussion

The SEGVENT. . ENDS directive defines all or part of alogical program segment
whose nameis nane. The contents of the segment consist of the assembled
instructions, directives, label declarations, and/or data initializations that occur
between SEGVENT and ENDS. These contents will be mapped to a contiguous
sequence of processor physical addresses by the system utilities. When a segment
name is used as an instruction operand, it is an immediate value.

Within asingle source module, each occurrence of SEGVENT. . ENDS that has the
same name is considered part of a single program segment. All ASM386 source
code must be specified within a SEGVENT. . ENDS. Every named variable and |abel
in an assembler program must also be defined within a SEGVENT. . ENDS.

Access, use, and conbi ne are optional; they may be specified in any order.

Specifying EO, ER, RO, or RW Access

access isan assembler (and processor) protection feature; it specifies the
kind(s) of access permitted to the segment.

The assembler issues awarning for the initial definition of a segment if the access
specification is omitted. The assembler also assigns an access value according to
the contents of the segment. For a segment that contains data only, the value is
RW; for a segment that contains code only, it is EO. For mixed code and data, the
valueisER.

After anamed segment has been defined with a SEGVENT statement, access can be
omitted when the segment is reopened. However, its value may not be changed
when the segment is reopened.

Specifying USE32 or USE16

52

use specifies the segment's USE attribute, which determines the addressing
mode, maximum segment size, and operand size for code within the
segment.

If use is not specified in the SEGVENT statement, the segment's USE attribute
defaults to that of its nearest containing segment or to that of the module. The USE
attribute of a module may be specified as an assembler operating control when the
assembler isinvoked. The overall default for assembler program modulesis
USE32.

USE32 causes 32-hit offsets to be generated for identifiers (variables, labels,
structures, records, and procedure names) defined within the segment. USE32
segments can be up to 4 gigabytes long.

Chapter 2 Segmentation

USE16 causes 16-bit address offsets to be generated for identifiers defined within
the segment. USE16 segments can be up to 64K bytes long.

The USE attribute of the segment also determines operand sizes for certain
processor instructions. For example, if the segment is USE32, the ENTER
instruction will assume that the required immediate operand is 32-bits; if the
segment is USE16, the operand will be zero-extended to 32-bits.

See also: USE attribute, ASMI386 Macro Assembler Operating Instructions
USE32, Chapter 4
address and operand sizes, Chapter 6

Specifying PUBLIC or COMMON

conmbi ne specifies how the segment will be combined with segments of the
same name from other modules to form a single physical segment in
memory. The actual combination of modules occurs at bind time.

If a SEGVENT directive specifying PUBLI C or COMVON already exists for a named
segment, combi ne specifications in other modules must match it. The named
segment's conbi ne attribute should be specified (at least) for theinitial segment
definition in subsequent modules. The following explains how alogical segment in
more than one module is combined:

» All segments of the same name that are defined as PUBLI C will be
concatenated to form one physical segment. Control the order of combination
with the binder.

The length of the combined PUBLI C segment will equal approximately the
sum of the lengths of the SEGVENT. . ENDS pieces. For a segment declared
PUBLI C, there is no guarantee that the beginning of a particular segment part
within the module will have an offset of zero within the final combined
segment.

» All segments of the same name that are defined as COMWON will be overlapped
to form one physical segment. Each modul€'s version of the segment begins at
offset zero within the segment, so each version has the same physical address.

The length of the combined COMMON segment will be equal to the longest
individual length within any of its defining modules. A COMMON segment may
not specify EO or ER access.

If neither PUBLI C nor COVMON is specified, the segment is non-combinable.
The entire logical segment must be contained in a single source module. It
cannot be combined with segments from other program modules.

ASM 386 Assembly L anguage Reference Chapter 2 53

Multiple Definitions for a Segment

Assembler segments can be opened and closed (with the SEGVENT. . ENDS
directive) within a source module as many times as you wish. All separately
defined parts of the segment are concatenated by the assembler and treated as if
they were defined within a single SEGVENT. . ENDS.

Assembler procedure, codemacro, and structure definitions may not overlap
segment boundaries.

When a segment is reopened, it is unnecessary to respecify itsaccess, use, and
conbi ne atributes, if any. Do not change the conbi ne or use attribute when a
segment is reopened.

If asegment's access is respecified, both access specifications must form a
compatible set. The following are compatible sets:

* RO and RW are acompatible set with aresulting access attribute of RW.

* Any combination of RO, EO, and ER form a compatible set with aresulting
access attribute of ER.

There are no other compatible setsfor access specifications.

Examples
1. Thisexample reopens the segment named DATA.

DATA SEGVENT
ABYTE DB 0O
AVORD DW 0O
DATA ENDS

; any nunber of other segnents not naned DATA
DATA SEGVENT
ANOTHERBYTE DB 0

ANOTHERWORD DW 0
DATA ENDS

54 Chapter 2 Segmentation

2. Thisexampleisan equivalent to the preceding example as a segment
definition for DATA.

DATA SEGVENT
ABYTE DB 0O
AVORD DW 0O
ANOTHERBYTE DB 0
ANOTHERWORD DW 0

DATA ENDS

3. Thisexample defines aPUBLI C segment with ER access.
CODE SEGVENT RO PUBLI C USE32
CCDE ENDS
CCODE SEGVENT EO

R ; inplied PUBLIC

: and USE32 from above
CCODE ENDS

4. Thisexample hasan error because RW and ER are not compatible access
specifications.

FOO SEGVENT RW

FOO ENDS
FOO SEGVENT ER i error:

R ; RWand ER are not conpatible
FOO ENDS

5. Thisexample has error s because it changes combine and use attributes when a
segment is reopened.

DATA SEGVENT RW COVMON USE16
DATA ENDS
DATA SEGVENT RW PUBLI C USE32
T ; errors:
; cannot change conbi ne

: or USE attribute

DATA ENDS

ASM 386 Assembly L anguage Reference Chapter 2 55

Lexically Nested or Embedded Segment Definitions

Assembler segments are never nested or embedded physically in processor
memory. For convenience, segment definitions may be nested in aprogram. This
isalexical nesting; it does not represent a physical nesting. However, care must be
taken to close lexically nested segments inside their containing segment(s).

Examples

1. Thisexampleillustrates a nested segment definition that is alegal assembler
construct. The assembler considers the code segment to be separate from the
data segment. The contents of the data segment are not contained within the
code segment (their physical addresses on the processor might be far apart in
memory after binding).

PROG_CODE SEGVENT
o ; begi n PROG_CODE

PROG_DATA SEGVENT
N ; begi n PROG_DATA
; stop assenbli ng PROG_CODE

PROG_DATA ENDS
- ; stop PROG_DATA
; start PROG_CODE again

PROG_CODE ENDS ; end PROG_CODE

2. Thiscodewill causean error. For lexically nested segment definitions,
SEGVENT. . ENDS pairs must be matched as shown in the preceding example.

PROG_CCODE SEGVENT ; begi n PROG_CODE
PROG_DATA SEGVENT ; begi n PROG_DATA
PROG_CODE ENDS i error:

; cannot cl ose PROG_CODE
; before closing
: PROG_DATA

PROG_DATA ENDS

56 Chapter 2 Segmentation

STACKSEG Directive

Syntax
name STACKSEG exp
Where:
nane isanidentifier for the stack segment; nane must be unique within the
program.
exp isthis declaration's contribution to the size (hnumber of bytes) of the
segment. exp must evaluate to a constant between 0 and 4 gigabytes
(232 - 1) for USE32 segments, and between 0 and 64K bytes (65,535)
for USE16 segments.
Discussion

The STACKSEG directive is used to allocate exp bytes for a stack segment named
nane. The STACKSEG directive both opens and closes the segment. Do not close
STACKSEG with ENDS.

Assembler stack segments always have RW access and PUBLI C combine attributes.
Multiple definitions of a stack segment with the same name will result in one
segment whose size is the sum of all specified sizes.

A stack segment is not explicitly assigned a use attribute of USE32 or USE16. A
stack segment's use attribute is either the same as:

* The nearest enclosing segment's use attribute, if any
* Or, the modul€'s use attribute

Most single-task applications have only one stack segment. Code, labels, variables,
or data initializations cannot be defined within a stack segment. The STACKSTART
operator or the END directive may be used to initialize the stack pointer (contents of
SS:(E)SP).

Seealso: Code, labels, variables, and data initializations, Chapter 4
STACKSTART operator, Chapter 5
END directive, Chapter 3

ASM 386 Assembly L anguage Reference Chapter 2 57

Combining Stack and Data Segments

If adata and a stack segment are given the same name, they are combined into a
single data/stack combined (dsc) segment if they have compatible attributes.

Such a segment has both a stack part and a data part. Its data segment must be
declared PUBLI Cwith RO or RW access. If the declared accessis RO, the
combined accessis RW.

Itisan error if the data segment is not PUBLI C (or if it has EO or ER access). The
stack and data segments will not be combined in this case. Instead, the assembler
will append _STACK to the name of the stack segment to keep each segment
distinct.

Assuming Segment Access

The ASSUNVE directive may not be omitted from assembler programs that reference
symbols (named variables and labels) unless segment overrides are specified for
every symbolic reference. The ASSUME directive may not be omitted from
programs with non-symbolic memory references such asES: WORD PTR 2.

The ASSUVE directive tells the assembler which processor segment register points
to aparticular logical segment in the program so that it generates code for
instruction operands that are named variables and labels in memory. However,
ASSUME does not load a segment register.

If no ASSUME statement is specified in a code segment, the assembler assumes that
CS contains the selector of the code segment but that no other segment register has
been loaded. The assembler cannot generate a correct logical address for a
symbolic reference unless it knows which segment register contains the selector for
the symbol's defining segment.

The processor cannot access symbolic memory data unless the segment registers
have been correctly loaded. Whenever you load a new selector into a segment
register, specify an ASSUME if subsequently coded instructions will reference
memory data via that segment register.

Seealso: Segment overrides, Chapter 5
segment registers, Chapter 1

58 Chapter 2 Segmentation

ASSUME Directive

Syntax
ASSUME Sreg: segpart [,...]
ASSUME Sreg: NOTHING [, .. .]
or
ASSUVE NOTHI NG
Where:
Sreg isone of theregisters DS, ES, FS, GS, or SS; Sreg may be CSonly if

NOTHI NGis specified.
segpart isthereserved word NOTHI NG, the name of a segment, or one of the
following forms:

SEGvar nane
SEG/ abel nane
SEGext er nal nane

The name of a segment indicates that Sr eg contains the segment
selector for variables and labels defined in the segment.

SEG var nane, | abel nane, or ext er nal nane indicates that Sr eg
contains the selector for the symbol's defining segment.

Discussion

ASSUME specifies the contents of the DS, SS, ES, FS, or GS register for the source
code that follows until the next ASSUME statement for the register occurs. When an
instruction references a variable, label, or external symbol, the assembler checks
for the following:

» Either an explicit segment override specifies that the symbol is accessible via
Sreg

* Or, an ASSUME specifies which Sr eg holds the selector of the symbol's
defining segment

Seealso: Segment overrides, Chapter 5

If neither has been specified, the assembler generates an error when an instruction
references the symbol.

An ASSUME statement isin effect until it is changed by another ASSUVE. For
example, if you ASSUVE some contentsin DS, that assumption holds until you
ASSUME new contents or NOTHI NGin DS.

ASM 386 Assembly L anguage Reference Chapter 2 59

When an ASSUVE specifies an appropriate selector in DS, ES, FS, GS, or SS, the
assembler generates any necessary segment override prefix byte when the symbol
isreferenced. Otherwise, a segment override must be specified every time the
symbol isreferenced.

ASSUME CS: may not be specified with the name of a segment or with a SEG
expression.

Specifying Segment Selectors with ASSUME

60

Specify an ASSUME wherever a new segment selector isloaded into a data or stack
segment register.

When an ASSUME is specified as:
ASSUME Sreg: segpart [,...]
segpart defines aselector as.
e A segment name, asin
ASSUME DS: DATA, ES: EDATA, FS: FDATA
* Or, asaSEGexpression with one of the following forms:

SEGvar nane
SEG/ abel nane
SEGext er nal nane

Assembler symbolic data (named variables, labels, or constants) represent logical
addresses that consist of a segment selector plus an offset. The selector part locates
the logical base address of the defining segment for the specified variable, label, or
external symbol. Within the segment, the variable, label, or external symbol name
represents an offset from this base address.

When ASSUMVE Sr eg: segment name is in effect (see Example 1), the assembler
generates rel ocatabl e addresses for symbolic and non-symbolic (anonymous)
referencesvia Sr eg.

For SEG expressions, the Sr eg is assumed to hold the selector of the segment in
which the named variable, label, or external symbol is defined. Use a SEG
expression to access variables, labels, and symbols when you do not know their
defining segment's name (the segment is part of another module).

Seealso: SEGoperator, Chapter 5

Chapter 2 Segmentation

Both for segment names and for SEG expressions, the designated segment must
have attributes that are consistent with the assumed segment register:

* For SS, the segment can be a stack segment, a data segment, or a data/stack
combined segment. |ts specified access must be RW.

* For DS, ES, FS, and GS, the segment may be a non-stack segment or a
data/stack combined segment. Its access must be RO, ER, or RW.

Note that CSisillegal in an ASSUVE statement that specifies a segment name or
SEG expression; the assembler generates awarning.

Examples

1. Thisexampletellsthe assembler that the ES register holds the selector of the
segment in which ABYTE isdefined. The assembler generates an ES override
byte and a rel ocatable address for the symbolic reference to ABYTE in CSEG. [t
also generates a rel ocatable address for the non-symbolic reference to
ES: BYTE PTR 0.

ESEG SEGVENT RW USE32
ABYTE DB ?
ESEG ENDS

CSEG SEGVENT ER USE 32

ASSUME ES: ESEG

MOV AL, ABYTE ; assenbl er generates ES
; override byte and
: rel ocat abl e address

: : ; for ABYTE

MOV AL, ES: BYTE PTR O

; ES:BYTE PTR 0 is al so

; relocatable

2. Thisexampletellsthe assembler that the DS register holds the selector of the
segment in which ABYTE is defined.

ASSUME DS: SEG ABYTE

ASM 386 Assembly L anguage Reference Chapter 2 61

3. Thefollowing exampleillustrates how the assembler handles ASSUVE
statements and checks memory accesses:

DATA SEGVENT RW PUBLI C
ABYTE DB 0O

AVORD DW 0O

DATA ENDS

EDATA SEGVENT RW PUBLI C
WHERE DB 0O
EDATA ENDS
CODE SEGMVENT ER PUBLI C

CBYTE DB 0
ASSUME DS: DATA

MOV AX, DATA
MOV DS, AX
MOV AL, ABYTE

MOV BL, CBYTE

MOV CL, WHERE

MOV AX, EDATA
MOV ES, AX

MOV CL, WHERE

ASSUME ES: EDATA
MOV CL, WHERE

CCODE ENDS

62 Chapter 2

constant in CODE segnent

DATA segnent
i s addressabl e through DS

AX : = selector for DATA
initialize DS

ABYTE is in DATA segment
and addressabl e via DS
instruction is K

CBYTE is in CODE segmrent,
currently being assenbl ed;
instruction is OK and
assenbler will generate
CS override byte

this is a programerror:
WHERE i s in EDATA segment
not covered by any ASSUME so
assenbl er issues warning

now ES can address
WHERE but assenbl er
hasn't been told,

SO warni ng i ssued again

is legal, because WHERE s
segnent, EDATA, is

assunmed to be in ES and
assenbl er generates ES override

Segmentation

Specifying ASSUME NOTHING and ASSUME CS:NOTHING
The general form:
ASSUVE NOTHI NG
is equivalent to the following statement:

ASSUME CS: NOTHI NG, DS: NOTHI NG, ES: NOTHI NG,
& FS: NOTHI NG GS: NOTHI NG, SS: NOTHI NG

When an ASSUME is specified as:
ASSUME Sreg: NOTHING [, .. .]

NOTHI NG indicates that no known value isin that segment register during the
execution of the following code. If there is no segment register assumption in
effect for a symbol's defining segment, references to that symbol must have an
explicit DS, ES, FS, GS, or SS override (see Example 1). Note that this does not
apply to symbols defined in code segments; the assembler always assumes that the
code segment will be accessed viathe CS register.

The assembler generates a non-relocatable address for a non-symbolic reference via
Sreg when an ASSUME. . NOTHI NGisin effect for a particular segment register (see
Examples 2 and 3).

When ASSUME CS: NOTHI NGis specified (see Example 3), the assembler generates
arelocatable address relative to the current code segment for a symbolic reference
in that segment. It generates a non-relocatable address for a non-symbolic
reference.

When ASSUME CS: NOTHI NGis omitted (see Example 4), the assembler generates
relocatable addresses both for symbolic and for non-symbolic references within the
current code segment.

ASSUME. . NOTHI NG also affects the assembler's generation of pointer relocatable
addresses within a data segment (see Example 5).

ASM 386 Assembly L anguage Reference Chapter 2 63

Examples

1.

This example shows how ASSUME DS: DSEG and ASSUME DS: NOTHI NG affect
symbolic references to ABYTE in CSEG.

ASSUME DS: DSEG

DSEG SEGVENT RW USE32
ABYTE DB ?

DSEG ENDS

CSEG SEGMVENT ER USE32

MOV AL, ABYTE ;

ASSUME DS: NOTHI NG
MOV AL, ABYTE ;
MOV AL, DS: ABYTE ;

ASSUME DS: DSEG still in effect
ABYTE i s accessi bl e,

assenbl er al ways generates

rel ocat abl e address

for valid synbolic reference

error generated
segnent override so
no error

This example shows how ASSUME DS: DSEG and ASSUME DS: NOTHI NG affect
identical non-symbolic referencesin CSEG.

ASSUME DS: DSEG ;
MOV AL, DS: BYTE PTR O

ASSUME DS: NOTHI NG ;
MOV AL, DS: BYTE PTR O

Chapter 2

DSEG and CSEG defined as
in Exanple 1
assenbl er generates

rel ocat abl e address
for DS:BYTE PTR O

assenbl er generates

non-rel ocat abl e address
for DS:BYTE PTR O

Segmentation

3. Thisexample shows how ASSUVE CS: NOTHI NG affects symbolic and non-
symbolic address generation. It causes the assembler to generate arelocatable
address for CVAL but not for CS: BYTE PTR 0.

CSEG SEGVENT ER PUBLI C
CVAL DB 90H
ENTRY:
ASSUME CS: NOTHI NG
MOV AL, CVAL ; assenbl er generates
: rel ocatabl e address for
; synbolic reference
MOV AL, CS:BYTE PTR O
: non-rel ocat abl e address for
; non-synbolic reference

4. The same code (see Example 3) without ASSUME CS: NOTHI NG causes the
assembler to generate relocatable addresses both for CVAL and for CS: BYTE
PTR 0.

CSEG SEGVENT ER PUBLI C
CVvAL DB 90H

ENTRY:

MOV AL, CVAL

; assenbl er generates

: rel ocatabl e address for
; synbolic reference

MOV AL, CS:BYTE PTR O
: rel ocatabl e address for
; non-synbolic reference

ASM 386 Assembly L anguage Reference Chapter 2 65

5. Thisexampleillustrates how ASSUMVE ES: segnane and
ASSUME ES: NOTHI NG affect the assembler's address generation within a data
segment.

ASSUME DS: DSEG, ES: ESEG
R ;. ESEG defined here
DSEG SEGVENT RW USE32
VAR1 DP ES: WORD PTR 0O
; assenbl er generates
; pointer rel ocatabl e address
;. for VARL

ASSUME ES: NOTHI NG
VAR2 DP ES: WORD PTR 0

; but not for VAR2
DSEG ENDS

66 Chapter 2 Segmentation

Program Linkage Directives

This chapter contains two major sections describing the five assembler directives
that support modular programs:

* NAME and END directives

These directives delimit program modules. NAME specifies a unique name for
each program module that the system utilities (binder and/or system builder)
will combine and locate. END terminates each program module's assembly.
END al so specifies a program’'s main module: it defines the program's entry
point (alabel) and specifies the initial segment selector value for the CS (code)
segment register; it may specify theinitial segment selector values for the DS
(data) and SS (stack) segment registers.

e PUBLI Cdirective

This directive defines variables and label s that can be accessed from another
module. The EXTRN directive defines variables and |abels that are accessed in
one module and declared PUBLI Cin another. The COMMdirective defines
variables as uninitialized symbols that will share storage with symbols of the
same name in other modules.

The system utilities allocate storage for COMMvariables. They also resolve
PUBLI C, EXTRN, and COWreferences.

Modular Programming with NAME and END

An assembler program may omit the NAME statement only if the entire program is
contained in a single object module. Otherwise, each module of the program
should include a NAME statement.

Every assembler program must specify the END statement as the last line of source.

ASM 386 Assembly L anguage Reference Chapter 3 67

NAME Directive

Syntax
NAMVE nodnane
Where:
nmodname isaname for the module. Mbdnane must be a unique identifier that
occurs at most once within the program.
Discussion

The NAME directive defines a name for an object module. Each module of an
assembler program must have a unique name.

A NAME directive is usually placed at the beginning of amodule. If the NAME
directive does not appear anywhere in an object module, the assembler assigns the
default name ANONYMOUS to the module and issues awarning. System utilities
report an error if two or more program modul es have the same name, including
ANONYMOUS

Example

It islegal to specify the same name for a module as for the source file that contains
it. The source filefor this non-main module is called SCAN. 386.

NAMVE SCAN : nanes the nodul e

END

68 Chapter 3 Program Linkage Directives

END Directive

Syntax

END [[CS:]! abel nane[, SS: segnane] [, DS: segnane]]

Where:

I abel nane isaname for the program entry point label; it must be a unique
identifier. CSisinitialized with the segment selector and EIP (or IP,
for USE16 segments) is set to the offset of the specified label.

Label nane's defining segment must have an EO or ER access
specification. Label name may be specified only in the main module
of aprogram.

segnane

See also:

is a segment name:

SS.

DS:

A segname preceded by SS: causes the SS segment
register to be initialized to the named segment's selector.
The segment can be a stack segment defined with
STACKSEG, or a data segment defined with the
SEGMENT directive. The access specified for the
segment must be RW. For a segment defined with
STACKSEG, (E)SPis set to the offset of the first dword
or word (depending on the stack segment use attribute)
immediately above the stack segment limit in memory.
(E)SPis0if the stack segment was not defined with
STACKSEG. For adatasegment, (E)SPisinitialized to
the segment's size in bytes plus 4 for a 32-bit stack or
plus 2 for a 16-bit stack.

A segname preceded by DS: causes the DS segment
register to be initialized to the specified segment's
selector. The segment can be a nonstack segment or a
data/stack combined segment. Access specified for the
segment must be RO, RW, or ER.

SEGVENT. . ENDS directive, Chapter 2
STACKSEG, Chapter 2

ASM 386 Assembly L anguage Reference Chapter 3 69

Discussion

The END directive is required asthe last statement in assembler modules. Its
appearance terminates the assembly process. |If the assembler encounters any text
beyond the END directive, it issues awarning.

In the program’s main module, the END statement must include a segment register
initialization for CS. Non-main modules must specify END without segment
register initializations.

The optional DS: segnane and SS: segnane specify the values to be loaded into

the data and stack segment registers when the program is loaded. The assembler
issues awarning if these are omitted in a module with an entry point label.

The module that contains the END statement initialization of CS: El P specifiesthe
code that isinitially executed when the program is loaded into memory. Execution
begins at the specified label. An entry point label must be specified in main
modules, unlessit is specified with the system builder. The END directive should
also define theinitial contents of DS and SS.

Example
NAVE MAI N

STACK STACKSEG 10

DATA SEGVENT RwW
ABYTE DB 0
DATA ENDS
CODE SEGVENT ER
ASSUME DS: DATA
START: MOV ESP, STACKSTART STACK
; superfluous because SS
; initialized with END
MOV AL, ABYTE
CODE ENDS

END CS: START, DS: DATA, SS: STACK

70 Chapter 3 Program Linkage Directives

Defining Shared Data with PUBLIC, EXTRN,
and COMM

Variables and labels defined in a program module with PUBLI C can be accessed
from other modules where they are declared with EXTRN.

The cOvMdirective defines variables with undefined values whose storage is not
allocated until the program modules are combined.

PUBLIC Directive

Syntax
PUBLI C name [,...]
Where:
name isthe identifier of avariable or label defined in the current module.
Discussion

The PUBLI C directive specifies which symbolsin a module are accessible from
other modules after all modules are combined. These symbols can be variables,
labels, or constants that have been defined using the EQU directive; it isan error to
specify any other kind of symbol.

Named constants that are referenced in other modules must be declared PUBLI Cin
their defining module. An external constant must be an integer; it may be up to
32-hits long.

|:| Note

Do not confuse this use of the reserved word PUBLI C with the
PUBLI C segment attribute used in the SEGVENT. . ENDS

statement.
See also: SEGVENT. . ENDS statement, Chapter 2
Example
PUBLI C VAR 1, VAR 2
VAR 1 DBIT 0100B : VAR 1 and VAR 2 are nmde
VAR 2 DD ' ABCD : accessible to other nodul es

; when programis conbi ned

ASM 386 Assembly L anguage Reference Chapter 3 71

EXTRN Directive

Syntax
EXTRN nane: [type][,...][use€]
EXTRN [use] nane: [type]l[,...]
or
[use] EXTRN nane:[type] [,...]
Where:
nane is the name of the external symbol, which must be declared PUBLI C
or COVMin another module.
type isBI T, BYTE, WORD, DWORD, PWORD, QAORD, TBYTE, ABS, a defined
record template name, a defined structure template name, NEAR, or
FAR. Except for ABS, the type specification must match that of the
external symbol, or the external symbol's type must be overridden
with PTR.
use iISUSE32 or USE16. The USE attribute specifies 32-bit or 16-bit
addressing, respectively, for the named symbol or list of symbols. If
no attribute is specified, the USE attribute of the nearest enclosing
segment or module is assumed.
Discussion

72

The EXTRN directive specifies symbols that are declared PUBLI C or COVMMin
another module. Such symbols can then be referenced in the current module.

All external variables have one of the following types: BI T, BYTE, WORD, DWORD,
PWORD, QAORD, TBYTE, a structure template name, or arecord template name. The
type for a structure or record isits length in bytes. Structure and record template
names cannot be forward references.

External constants can be signed integers up to 32-bits long (USE32 segment) or up
to 16-bitslong (USE16 segment). External constants must be declared PUBLI Cin
another module and be declared with EXTRN: ABS in modules that reference them.
Such symbols are assigned type DWORD (USE32 EXTRN) or WORD (USE16 EXTRN).

All external |abels and procedure labels have type NEAR or type FAR. The label or
procedure is NEAR if it is defined in the same named segment asits callers;
otherwise, it isFAR. If typeisomitted, FARis assumed for an EXTRN label.

See also: PTR, Chapter 5
segment USE attributes, Chapter 2
variable and label types, Chapter 4

Chapter 3 Program Linkage Directives

Placement of EXTRN

Within program segments, the following rules apply to the placement of the EXTRN
directive:

1.

If the external variable's or label's defining segment (in another module) is
known, place the EXTRN statement between a SEGVENT. . ENDS pair that has
the same segment name as the SEGVENT. . ENDS in which the symbol was
defined.

Such a symbol can then be referenced in the same manner as any other
variable or label. For example, if the module SCAN. 386 contained the
following segment and variable definition:

DATA SEGVENT RW PUBLI C
COUNT DB 0

PUBLI C COUNT
DATA ENDS

then the EXTRN directive should be specified in another module as follows:

DATA SEGVENT RW PUBLI C
EXTRN COUNT: BYTE
DATA ENDS

If the external symbol's defining segment is unknown, if its defining segment is
non-combinable, or if the symbol is an EXTRN: ABS constant, place the EXTRN
statement outside of all SEGVENT. . ENDS pairs in the module. To address such
an external symbol, load the segment selector of the symbol into a segment
register using the SEG operator. For example:

MOV AX, SEG COUNT
MOV ES, AX

To validate its addressability, use an ASSUME directive such as the following:

ASSUME ES: SEG COUNT
MOV DX, COUNT

or use a segment override for each reference to the symbol as in the following:

MOV DX, ES: COUNT

See also: SEG and segment overrides, Chapter 5

ASSUME directive, Chapter 2

ASM 386 Assembly L anguage Reference Chapter 3 73

COMM Directive

Syntax
COW nane[, .. .]
Where:
nane isavariable name; it must be aunique identifier. Name may not bea
variable of type BI T.
Discussion

74

The cOMMdirective specifies that a variable defined in the current moduleisa
CoOvMsymbol. COMMsymbols are classified as global variables.

The cOmMmdirective allows the binder to allocate space for a symbol at bind time.
Variables specified with COMMin more than one modul e share storage space. They
are similar to FORTRAN blank common variables or C extern variables.

Variables declared with COVMMcannot be initialized. Use a? when defining COVM
variables to indicate uninitialized storage.

Seealso: Allocating uninitialized storage, Chapter 4

The cOMMdirective may appear inside or outside the segment in which the variable
is defined. COMMmay be placed before the definition of the variable it describes
(see the Example).

Variables cannot be declared EXTRN in the same module where they are declared
with COW They may be declared with PUBLI C or with EXTRNin other modules,
aswell as with COvM

A covMsymbol does not actually occupy space in a segment until bind time. The
binder determines whether a variable reference will be resolved by a matching
PUBLI C definition from another module or whether space will be allocated for it in
a segment where the COMMsymbol is defined. If avariable is not declared PUBLI C
in another module, the binder will alocate space for COMMdata in the first-bound
module (and segment) in which it encounters the COvMsymbol.

A cOvMsymbol may have a different type than its PUBLI C counterpart (with the
same name) in another module. However, such a COMMsymbol is treated as an
EXTRN symbol; the binder stores the COMMsymbol in the corresponding PUBLI C
symbol's defining segment.

A COMMsymbol that has no PUBLI C counterpart in another moduleis treated as a
PUBLI C symbol. The binder allocates storage for the COMMsymbol in the first-
bound segment where it is defined. The binder then resolves subsequent references
(COMMor EXTRN) to that symbol.

Chapter 3 Program Linkage Directives

A COMMsymbol's containing storage segment is determined by the binder. For this
reason, loading a segment register in assembler modules with the name of a COvM
symbol's defining segment is difficult. Use the SEG operator to reference COVM
symbolsin modules. For subsequent symbolic references, use the SEG operator
again to reload the correct segment selector into the segment register.

Example

NAME MOD 1

COW X, Z ;. COW st atenent before data definition
; outside of defining segnment

DATA SEGVENT RW PUBLI C

COW A, B ;. COW st atenent before data definition

A DW 13 DUP (?) ; inside defining segment

B DB ?

X DW ?

Z DD ?

LOCAL DD ?

DATA ENDS
END

ASM 386 Assembly L anguage Reference Chapter 3 75

Defining And Initializing Data

This chapter has four major sections:

 Anoverview of assembler |abels, variables, and data

This section explains:

Assembler label and variable types

The relationship between assembler variable types and the values
associated with variables: the processor or floating-point coprocessor data

types
How to specify data values in assembler programs

* Assembler variables

This section explains:

Storage allocations for variables
Variable attributes

Defining and initializing simple-type variables with the DBIT, DB, DW,
DD, DP, DQ, and DT directives

Defining compound types with the RECORD and STRUC directives; defining
and initializing variables of these types (records and structures)

Defining and initializing variables with DUP clause(s)

* Assembler labels

This section explains:

Label attributes

The location counter and the ORG and EVEN directives
The LABEL directive

Defining implicit NEAR labels

The PROC directive

» Using symbolic data, including named variables and labels, with the EQU and
PURGE directives

ASM 386 Assembly L anguage Reference Chapter 4 77

Overview of Assembler Labels and Variables

The labels and variables in an assembler program define logical addresses:

* A label defines an address that is either an offset within the segment currently
being assembled or alocation outside the current segment whose addressis
both a segment selector and an offset within that segment.

* A named variable also defines an address whose contents (a value) can be
accessed by areference to the variable name.

L abels and named variables are sometimes called symbolic addresses because their
names represent logical addresses. However, assembler variables are not required
to have names, as long as their values can be accessed.

Seealso: Accessing assembler addresses and values, Chapter 5

Assembler Label and Variable Types

The assembly language is strongly typed. The assembler enforces type rules when
it encounters alabel or allocates storage for a variable (named or unnamed).

Each assembler label has one of the following types:

NEAR indicates that the logical address represented by the label is an offset.
NEAR is the default l1abel type.

FAR indicates that the logical address represented by the label is both a
selector and an offset.

Each assembler variable has a type that must be specified when the variableis
defined with a storage allocation statement. A variabl€'s type indicates the
processor or floating-point coprocessor storage size for the variable's value(s). A
variable's typeis either a simple type or acompound type. A compound typeis
constructed from one or more simple types.

The assembler (reserved word) names for simple types are BI T, BYTE, WORD,
DWORD, PWORD, QAORD, and TBYTE. For BI T-type variables, the assembler
allocates a byte of storage because processor addresses fall on byte boundaries. For
variables of the other simple types, the assembler allocates storage of 8-, 16-, 32-,
48-, 64-, or 80-bits, respectively.

78 Chapter 4 Defining and Initializing Data

A compound-type variable is either arecord or a structure. Records and structures
are programmer-defined (and named) types. A record or structure template defines
atype that specifies the storage size(s) to be allocated for any variable of the type.
Record and structure storage allocation statements define assembler variables of
these types.

A DUP clause can be added to any assembler storage allocation statement to
allocate a sequence of storage unitsthat are al of the same type. DUP allocates
storage for array-like variables whose elements are contiguous storage units,
possibly with different values.

Assembler Data Values

The processor or floating-point coprocessor stores all data as a sequence of 1s and
0s. The value that such a sequence representsis subject to interpretation. The
assembler interprets values in the context of aprogram. For example, the logical
address represented by alabel is 32-bitsin a USE32 code segment; it is 16-bitsin a
USE16 segment.

The value of an assembler variable aso has meaning only in context. If avariable
is used as the operand of a shift instruction, its corresponding value represents a
simple sequence of bits. If the same variable is used as the operand of a subtract
instruction, its corresponding value represents a number.

The contextually determined meaning of avariable valueis called its processor or
floating-point coprocessor data type.

ASM 386 Assembly L anguage Reference Chapter 4 79

Data Types

80

The values of assembler variables can be interpreted as the following processor and
floating-point coprocessor data types:

* Processor or floating-point coprocessor signed integers
* Processor ordinas

* Processor unpacked or packed BCD digit(s)

» Floating-point coprocessor packed BCD integers

* Processor strings

* Processor bit strings or bit fields

» Processor near or far pointers

* Floating-point coprocessor reals

For example, the value of a DWORD-type variable can represent any of the following
in the context of a program:

* A processor integer or afloating-point coprocessor short integer
* A processor ordinal
* A processor string that is 4 bytes long

* A processor hit string that is 32-bitslong (it may contain a bit field up to
32-hits long)

* A floating-point coprocessor single precision real

To access strings, BYTE-type assembler variables must be defined. Processor
strings are composed of contiguous bytes. The name of a BYTE-type variable (or
the unnamed but initially allocated storage unit) defines the logical address of such
astring'sfirst byte.

Assembler pointer variables are 32-bit DWORD or 48-bit PWORD types that represent
alogical address. DWORD (near) pointer variables represent an offset within a
segment. PWORD (far) pointers have two components: a 16-bit segment selector and
a 32-hit offset.

The assembler types WORD, DWORD, QWORD, and TBYTE can represent 16-, 32-, 64-,
and 80-hit floating-point coprocessor data types. 16-bit datais aword integer,
32-bit datais either a short integer or asingle precision real, 64-bit datais either a
long integer or a double precision real, and 80-bit data is either a packed decimal
integer or an extended precision real.

Seealso: Floating-point numbers, Chapter 7

Chapter 4 Defining and Initializing Data

Numeric Data Value Ranges

The type specified for a variable determines the range of values it can represent.

The assembler checks variable definitions for initial values that are too large for the
declared type. Table 4-1 summarizes the (decimal) range of values for each
variable type that can represent a processor or floating-point coprocessor number.

Table4-1. Assembler Variable Typesand Numerical Value Ranges

Variable Data Type Length in Value Range in Decimal
Type bits
BIT bit 1 0 or 1 binary
BYTE byte 8 -28..127 for integers
0..255 for ordinals
WORD word 16 -32,768..32,767 for integers
0..65,535 for ordinals
FP word integer 32,768..32,767
DWORD dword 32 -231 (281 - 1) for integers
0..(232 - 1) for ordinals
FP short integer =231 (231 .1)
FP single -3.4E38..-1.2E-38, 0.0,
precision real 1.2E-38..3.4E38
QWORD FP long integer 64 -263 (263 .1)
FP double -1.7E308..-2.3E-308, 0.0,
precision real 2.3E-308..1.7E308
TBYTE FP packed 80 -(1018 - 1)..(1018 - 1)
decimal integer
FP extended -1.1E4932..-3.4E-4932,
precision real 0.0, 3.4E-4932..1.1E4932

FP in Table 4-1 indicates a floating-point coprocessor data type.

ASM 386 Assembly L anguage Reference

Chapter 4

8l

Specifying Assembler Data Values

Assembler data can be expressed in binary, hexadecimal, octal, decimal, or ASCI|
form. Decimal values that represent integers or reals can be specified with aminus
sign; aplus sign is redundant but accepted. Real numbers can also be expressed in
floating-point decimal or in hexadecimal notations. Table 4-2 summarizes the
valid ways of specifying data values in assembler programs.

Table4-2. Assembler Data Value Specification Rules

Hexadecimal 40490FR

Value in Examples Rules of Formation

Binary 1100011B 110B A sequence of 0's and 1's followed by the
letter B.

Octal 77770 4567Q A sequence of digits in the range 0..7
followed by the letter O or the letter Q.

Decimal 3309 3309D A sequence of digits in the range 0..9
followed by an optional letter D.

Hexadecimal 55H 4BEACH A sequence of digits in the range 0..9
and/or letters A..F followed by the letter
H. A digit must begin the sequence.

ASCII '‘AB' 'UPDATE.EXT' Any ASCII string enclosed in single
quotes.

Decimal -1. 1E-32 3.14159 A rational number that may be preceded

0CO000R

by a sign and followed by an optional
exponent. A decimal point is required if
no exponent is present but is optional
otherwise. The exponent begins with the
letter E followed by an optional sign and a
sequence of digits in the range 0..9.

A sequence of digits in the range 0..9
and/or letters A..F followed by the letter
R. The sequence must begin with a digit,
and the total number of digits and letters
must be (8/16/20) or (9/17/21 with the
first digit 0).

82 Chapter 4

Defining and Initializing Data

A real hexadecimal specification must be the exact sequence of hex digitsto fill the
internal floating-point coprocessor representation of the floating-point number. For
this reason, such values must have exactly 8, 16, or 20 hexadecimal digits,
corresponding to the single, double, and extended precision reals that the floating-
point coprocessor and the floating-point instructions handle. Such values can have
9, 17, or 21 hexadecimal digits only if the initial digit must be a zero because the
value begins with aletter.

Data values can be specified in an assembler program in avariety of formats, as
shownin Table 4-2. The way the processor or floating-point coprocessor
represents such datainternally is called its storage format.

Seealso: Processor storage formats, Appendix A
floating-point coprocessor storage formats, Chapter 7
Initializing Variables
Assembler variables can be initialized by:
* Variable or segment names that represent logical addresses
» Constants (see Table 4-2)
* Constant expressions

A series of operands and operatorsis called an expression. An expression that
yields a constant value is called a constant expression.

Seealso: Assembler expressions, Chapter 5

The assembler evaluates constant expressions in programs.

How the Assembler Evaluates Constant Expressions

The assembler can perform arithmetic operations on 8-, 16-, and 32-bit numbers.
The assembler interprets these numbers as integer or ordinal data types.

An integer value specified with asign is a constant expression. The assembler
evaluates integer or ordinal operands and expressions using 64-bit two's
complement integer arithmetic.

By using this arithmetic, the assembler can evaluate expressions whose operands
sizes might extend beyond the storage type of the result. Aslong asthe
expression's value fits in the storage type of the destination, the assembler does not
generate an error when intermediate results are too large. The assembler does
generate an error if the final result istoo large to fit in the destination.

ASM 386 Assembly L anguage Reference Chapter 4 83

Variables

A variable defines alogical address for the storage of value(s). An assembler
variableis not required to have a name as long as its associated value(s) are
accessible. But, every variable has atype; records and structures have a compound
type.

Assembler variables must be defined with a storage allocation statement. A storage
allocation specifies atype (storage size in bytes) and defines alogical address for a
variable that gives access to the variable's valug(s). A storage alocation statement
may also specify initial value(s) for avariable.

Usethe DBIT, DB, DW, DD, DP, DQ, or DT directive to allocate storage for
simple-type variables of the following sizes:

DBIT 1-bit (zero padded to a byte boundary)

DB 8-bits (byte)

DW 16-bits (word)
DD 32-hits (dword)
DP 48-bits (pword)
DQ 64-bits (qword)
DT 80-hits (10 bytes)

Use the RECORD and STRUC directives to define type names that can be specified as
(compound) types for record or structure variables:

The RECORD Directive
defines a storage template for variables of itstype. The template
defines 1 to 4 bytes of storage for fields of bits. Use arecord
allocation statement to define a variable of the record type. Variables
of arecord type consist of contiguous fields of bit-encoded data.
Records are used for accessing specific bitsin the flags, in the storage
fields of areal number, in the fields of a pointer, etc. The assembler
MASK, SI ZE, and W DTH operators can be used to access record fields.

See also: MASK, SI ZE, and W DTH operators, Chapter 5

84 Chapter 4 Defining and Initializing Data

The STRUC Directive
defines a storage template with named fields, each of a specified type.
Variables of a structure type consist of contiguous variables with the
types (and names) of the constituent template fields. Structure
template fields are simple variables, usually initialized with undefined
values. Use astructure allocation statement to define a variable of
this type.

A structure template's field names define offsets from alogical
address. Any memory location pointed to by abase or index register
becomes an undeclared variable of the structure typeif it is used to
reference a field name with the dot operator (e.g.,

[EBP] . fi el dnane).

Use a DUP clause within any assembler data allocation statement to allocate and
optionally initialize a sequence of storage units of asingle variable type. DUP
defines an array-like variable whose element values are accessed by an offset from
the variable name or from the initially specified storage unit.

Simple Data Allocations

Both simple-type variables and the components of compound types are defined by
simple data allocation statements. The general syntax of a simple data allocation

statement is:
Syntax
[name] dtyp init [,...]
Where:
nane isthe name of the variable. Within the module, it must be a unique
identifier.
dtyp isDBIT, DB, DW, DD, DP, DQ, or DT.
init istheinitial value to be stored in the allocated space. i ni t can be a

numeric constant (expressed in binary, hexadecimal, decimal, or
octal), an ASCII string, or (except for Bl T-type variables) the
question mark character (?), which specifies storage with undefined
value(s). dt yp restricts the values that may be specified for i ni t .

Record and structure allocation statements define compound-type variables.

ASM 386 Assembly L anguage Reference Chapter 4 85

Variable Attributes
A defined variable has four attributes:

86

Segment

USE

Offset

Type

The segment in which the variable is defined. The value of a
variable's segment attribute is the selector for its segment.

The USE32 or USE16 of the segment in which the variable is defined.
See also: Segment USE attributes, Chapter 2

The variable'slogical address within its defining segment. Thisvalue
represents the distance in bytes from the base (or start) of the defining
segment to the start of the variable in memory. For USE32 segments,
the offset is a 32-bit value; for USEL6 segments, it isa 16-bit value.

The sizein bytes of the variable. For simple-type variables, the data
initialization directive (DBIT, DB, DW, DD, DP, DQ, or DT)
specifiesthe type. For compound variables, the typeis a programmer-
defined record or structure template name. A variable's type
determines how it can be used in an instruction and, in some cases,
how data will be stored within the variable.

When avariable is defined in a program, the assembler will store its definition,
which includes its attributes.

See also:

Chapter 5 for more information about expression operators that
override these attributes and access their values

Chapter 4 Defining and Initializing Data

Defining and Initializing Variables of a Simple Type

All assembler variable definitions use the DBIT, DB, DW, DD, DQ, DP, or DT
directives. The template components of compound variable types are simple types
defined with these directives.

DBIT Directive

Syntax
[name] DBIT init [,...]
Where:
nane isthe name of the variable. Within the module, it must be a unique
identifier.
init isabinary digit (1 or 0) followed by the letter B or b, or astring of up
to 32 binary digits followed by the letter B or b.
Discussion

DBIT reserves storage for and initializes a single-bit variable or a bit string of type
BI T. If i ni t isnot specified explicitly, the assembler assignsa 0 and issues a
warning.

DBIT actually reserves an entire byte of storage for a 1-bit variable (unlessit is
defined within a structure) because processor addresses fall on byte boundaries.
DBIT fills one or more bytesfor an i ni t list with the specified values and zero-
pads such a variable out to the nearest byte boundary. DBI T variables defined one
at atime occupy consecutive bytesin memory.

Within an assembler structure consecutively defined bit variables will be
concatenated; they are stored as contiguous bits in memory and they can cross byte
boundaries.

ASM 386 Assembly L anguage Reference Chapter 4 87

Examples

1. TheDBIT directiveinitializes afull byte for simple Bl T variables, even when
fewer than 8 digits are specified for an initial value.

ONEBI T DBIT 1B ; initializes a byte to 00000001

TWOBI TS DBIT 10B ; initializes a byte to 00000010

2. For each BI T-type variable defined outside a structure, the DBI T directive
concatenates an init list and pads the value with zeros out to the nearest byte
boundary. However, each variable defined with DBI T is allocated storage
separately.

BIT1 DBIT 1B, 0B, 1B, 0B, 1B ; 00010101 is initial val ue
BIT2 DBIT 1B ; 00000001 is initial value
BIT3 DBIT 10B ; 00000010 is initial value

3. For BI T-typefields of a structure, the assembler concatenates contiguous bit
fields and pads the value out to the nearest byte boundary. Structure fields of
type BI T can cross byte boundaries.

Bl TSTRUK STRUC

BITL DBIT 1B, 0B, 1B, 0B, 1B
BIT2 DBIT 1B

Bl TSTRUK ENDS

BI TS Bl TSTRUK <> : 00110101 is initial value stored

88 Chapter 4 Defining and Initializing Data

DB Directive

Syntax
[name] DB init [,...]
Where:
nane isthe name of the variable. Within the module, it must be a unique
identifier.
init isaquestion mark (?), a constant expression, or a string of up to 255
ASCII characters enclosed in single quotes (').
Discussion

DB reserves storage for and optionally initializes avariable of type BYTE. ?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2). The specified constant or constant expression must evaluate to a
number in the range 0..255 (processor ordinal) or -128..127 (processor integer).

The components of character string values must be ASCII characters and the whole
string must be enclosed in single quotes. To include a single quote character within
such astring, specify two single quotes (* ').

Each ASCII character requires a byte of storage. In BYTE strings, successive
characters occupy successive bytes. The name of the variable represents the logical
address of the first character in such a string.

Examples

1. Thisexampleinitializes the variable ABYTE to the constant value 100
(decimal). It reserves storage for another byte with an undefined value.

ABYTE DB 100
DB ?

2. Thisexampleinitializes three successive bytes to the values 4, 10, and 200,
respectively.

BYTES3 DB 4, 10, 200

3. Thisexampleinitializes seven bytes containing the ASCII values of the
characters A, B, C, ', D, E, and F, respectively.

STRGWQUOT DB ' ABC ' DEF'

ASM 386 Assembly L anguage Reference Chapter 4 89

DW Directive

Syntax
[name] DWinit [,...]
Where:
nane isthe name of the variable. Within the module, it must be a unique
identifier.
init isaquestion mark (?), a constant expression, the name of avariable
or label defined in a USE16 segment, the name of a segment (USE16
or USE32), or astring of up to 2 characters enclosed in single
quotes (').
Discussion

DW defines storage for and optionally initializes a 16-bit variable of type WORD. ?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2). The specified constant or constant expression must evaluate to a
number in the range 0..65535 (processor ordinal) or -32768..32767 (processor
integer).

A USE16 variable or label nameyields aninitial value that is the offset of the
variable or label. Itisan error to initialize aWORD variable with the name of a
variable or label that has been defined in a USE32 segment; its offset istoo large
(32-bits). A segment name yields an initial value that is the segment selector.

A 1- or 2-character string yields an initial value that isinterpreted and stored as a
number. The assembler stores a 2-byte value even if the specified string has only
one character:

» It storesthe specified initial valuein the least significant byte.

» It zeros the remaining byte.

90 Chapter 4 Defining and Initializing Data

Examples

1.

This example tells the assembler to reserve storage for two uninitialized words.
UNINIT DW 2, ?
This example initializes WORD variables with numeric values.

CONST DwW 5000 ; deci mal constant
HEXEXP DW OFFFH - 10 ; expression

This example initializes VARLOFF to the offset of VARL (both variables are
within a USE16 segment) and CODESEL to the selector of a segment named
CODE.

VARLOFF DW VARL
CCODESEL DwW CODE

This example initializes NUMB to the ASCII value (interpreted as a number) of
the letters AB.

NUVB DW ' AB' ; equivalent to NUMB DW 4142H

ASM 386 Assembly L anguage Reference Chapter 4 91

DD Directive

Syntax
[name] DD init [,...]
Where:
nane isthe name of the variable. Within the module, it must be a unique
identifier.
init isaquestion mark (?), a constant expression, the name of avariable
or label, or astring of up to 4 characters enclosed in single quotes (').
Discussion

92

DD defines storage for and optionally initializes a 32-bit variable of type DWORD. ?
reserves storage with an undefined value.

Integer initial values can be specified in binary, octal, decimal, or hexadecimal (see
Table 4-2). The specified constant or constant expression must evaluate to a
number in the range:

-281 . 28L.1 (processor integer or floating-point coprocessor short integer)
Or,0..2%-1 (processor ordinal)

Real initial values can be specified in floating-point decimal or in hexadecimal (see
Table 4-2). A decimal constant must evaluate to areal in the ranges:

-3.4E38..-1. 2E-38, 0.0, 1.2E-38..3.4E38
(floating-point coprocessor single precision real)

A constant expressed as a hexadecimal real must be the exact sequence of hex
digitsto fill the internal floating-point coprocessor representation of asingle
precision real (8 hexadecimal digits or 9 hexadecimal digits, including an initial 0).

A USE16 variable or label nameyields aninitial value that fills the dword. Its
high-order word contains the segment selector and its low-order word contains the
offset of the USE16 variable or label.

A USE32 variable or label nameyields an initial value that is the offset (from the
segment base) of the variable or label.

A string (up to four characters) yields an initial value that isinterpreted and stored
asanumber. The assembler stores a 4-byte value even if the specified string has
fewer than four characters:

» It storesthe specified initial valuesin the least significant bytes.
* It zeros the remaining bytes.

Chapter 4 Defining and Initializing Data

Examples

1. Thisexample defines two variables, afloating-point coprocessor short integer
and asingle precision real.

I NTVAR DD 1234567
REALVAR DD 1. 6E25

2. Inthisexample, LAB1 was defined in a USE16 segment and LAB2 was defined
in aUSE32 segment.

LAB1_ADD DD LAB1 ; LAB1_ADD contains of fset and
; segment sel ector of LABL
LAB2_ADD DD LAB2 ; LAB2_ADD contains of fset of LAB2

3. Thisexampleinitializes three unnamed dwords. The first contains an
undefined value. The second contains the ASCII numeric value of the letter A.
The third contains the integer 450 (decimal).

DD ?, 'A, 450

ASM 386 Assembly L anguage Reference Chapter 4 93

DP Directive

Syntax
[name] DP init [,...]
Where:
nane isthe name of the variable. Within the module, it must be a unique
identifier.
init isaquestion mark (?), an integer constant expression, the name of a
variable or label, the name of a segment, or a string of up to 6
characters enclosed in single quotes (').
Discussion

DP defines storage for and optionally initializes a 48-bit variable of type PWORD. ?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal.
The specified constant expression must evaluate to an integer in the range:

=247, 247.1,
Constants used to initialize pwords cannot be expressed as real numbers.

A variable or label name (whatever the USE attribute of its defining segment) yields
aninitial value that fills the pword. The pword will contain both the variable's or
label's offset and the segment selector (16-bits). The low-order dword stores the
offset.

A segment name yields an initial value that isalogical address consisting of the
segment selector (16-bits) and an offset of zero (32-bits) to the start of the named
segment.

A string (up to six characters) yields aninitial value that is interpreted and stored as
anumber. The assembler stores a 6-byte value even if the specified string has
fewer than six characters:

» It storesthe specified initial valuesin the least significant bytes.

» It zeros the remaining bytes.

94 Chapter 4 Defining and Initializing Data

Examples

1. Thisexampleinitializes the low-order byte to the ASCII value (interpreted as a
number) of the digit 1, and the five high-order bytesto zero.

DP '1' ; first byte contains 31H
; remai ning bytes contain 00000000

2. Thisexampleinitializes VARPTR to the segment selector and offset of VAR32.
VARPTR DP VAR32

ASM 386 Assembly L anguage Reference Chapter 4 95

DQ Directive

Syntax
[name] DQ init [,...]
Where:
nane isthe name of the variable. Within the module, it must be a unique
identifier.
init isaquestion mark (?), a constant expression, or a string of up to eight
characters enclosed in single quotes (').
Discussion

DQ defines storage for and optionally initializes a 64-bit variable of type QAORD.
The ? reserves storage with an undefined value.

Integer initial values can be specified in binary, octal, decimal, or hexadecimal (see
Table 4-2). The specified constant expression must evaluate to an integer in the
range - 263. . 263. 1 (floating-point coprocessor long integer).

Real initial values can be specified in floating-point decimal or hexadecimal (see
Table 4-2). A decimal constant or expression must evaluate to areal in the ranges:

-1.7E308..-2. 3E-308, 0.0,
2. 3E-308.. 1. 7TE308
(floating-point coprocessor double precision real).

A real hexadecimal constant must be the exact sequence of hex digitsto fill the
internal floating-point coprocessor representation of a double precision real (16
hexadecimal digits or 17 hexadecimal digits, including an initial 0).

A string (up to 8 characters) yields an initial value that isinterpreted and stored as a
number. The assembler stores an 8-byte value even if the specified string has
fewer than 8 characters:

» It storesthe specified initial valuesin the least significant bytes.

* It zeros the remaining bytes.

96 Chapter 4 Defining and Initializing Data

Examples

1. Thisexampleinitializes VARG to a floating-point coprocessor double precision
real and VAR? to the same value in real hexadecimal notation.

VAR6 DQ - 3. 6E-200 : deci mal notation

VAR7 DQ 96860B837993DEESR : real hexadeci mal notation
2. Thisexample allocates 64-bits of storage for UNDEFNUM with an undefined

value.

UNDEFNUM DQ ?

3. Thisexampleinitializes CHAR s low-order byte to the ASCII value
(interpreted as a number) of the comma, and its seven high-order bytes to zero.

CHAR DQ ', ; first byte contains 2CH
; remaining bytes contain 00000000

ASM 386 Assembly L anguage Reference Chapter 4 97

DT Directive

Syntax
[name] DT init [,...]
Where:
nane isthe name of the variable. Within the module, it must be a unique
identifier.
init isaquestion mark (?) or a constant expression.
Discussion

DT defines storage for and optionally initializes an 80-bit variable of type TBYTE.
? reserves storage with an undefined value.

A constant expression must evaluate to an integer or real in the range(s):
-10%8-1. . 10%8- 1 (floating-point coprocessor packed decimal integer)
Or,

-1.1E4932. .-3.4E-4932, 0.0, 3.4E-4932..1.1E4932
(floating-point coprocessor extended precision real).

Real initial values can be specified in floating-point decimal or in hexadecimal (see
Table 4-2).

A hexadecimal real constant must be the exact sequence of hex digitsto fill the
internal floating-point coprocessor representation of an extended precision real (20
hexadecimal digits or 21 hexadecimal digits, including an initial 0).

Examples

98

1. Thisexample allocates 80-bits of storage for ATBYTE with an undefined value.
ATBYTE DT ?

2. Thisexampleinitializes EVARL1 to a floating-point coprocessor extended
precision real and EVAR2 to the same value in real hexadecimal notation.

EVARL DT 9E-15
EVAR2 DT 3FD0A2212C962206C274R

Chapter 4 Defining and Initializing Data

Defining Compound Types and Their Variables

The RECORD and STRUC directives define the names of compound types, together
with a storage allocation templ ate.

The RECORD directive defines atemplate that specifies the size and fields for
variables of the record type. Use the record template name in arecord allocation
statement to all ocate storage for and initialize variables of arecord type.

An assembler record consists of contiguous fields of bit-coded data. Records can
be defined to format bytes, words, or dwords for bit-packing. A record template
can befrom 1 to 4 bytesin size. Each record of the template type has a specific
number of fields, and each field contains a specific number of bits. Information
can be stored in and accessed from these fields.

The STRUC directive defines a template with named and typed fields, optionally
with default data values. Each field is of a simple type (defined with DBIT, DB,
DW, DD, DP, DQ, or DT), but every field in atemplate may be of a different type.

Use structure templates to group associated data, such as the storage format fields
of floating-point coprocessor real numbers or the fields of apointer. Use structure
templates to impose structure on memory data that will be accessed by a base or
index register.

Use the structure template name as the type in a structure allocation statement to
allocate storage for and initialize variables of the structure type. ASM386
structures are alocated memory in the same way bytes, words, and dwords are
allocated. Their fields can be accessed readily using the notation:

St ructure-nane. fi el d-nane
The (optional) default values of structure template fields can be:
* Overridden when a structure variable is allocated and initialized
» Accessed or overwritten during program execution

Seealso: Accessing structure template fields, Chapter 5
overwriting structure template fields, Chapters 6 and 7

ASM 386 Assembly L anguage Reference Chapter 4 99

RECORD Directive

Syntax
name RECORD field: exp [=init-val]l [,...]

Where:

nane isan identifier that creates a record template type name; nane must
be unique within the module.

field isan identifier that defines a bit field within the record type; fi el d
must be unique within the module.

exp is a constant expression that evaluates to the number of bitsin the

fiel d. expmustevaluateto an ordinal in therange 1..32. The
maximum number of bitsin arecord is 32, soitisan error if the sum
of arecord template's exps is greater than 32.

init-val isaconstant expression or acharacter string enclosed in single
quotes (').

Discussion

100

RECORD creates a BYTE-, WORD-, 3- BYTE- or DWORD-sized record template
definition. Record variables can then be allocated and initialized through the use
of the record name in arecord allocation statement (see the next section).

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2). The specified constant expression must evaluate to a non-negative
integer value that fitsin its field.

A character string has a maximum length of four characters because the maximum
size of arecord is 4 bytes and each ASCII character requires a byte of storage.

Thefirst field specified in the record template occupies the most significant bits
when dataiis allocated for arecord of the (template) type. Record template fields
(and their default values) are not required to fill to a byte boundary. A record
template whose fields do not occupy afull BYTE, WORD, or DWORD is called a partial
record.

The assembler right-justifies fields within a partial record and pads the record (with
zeros) out to the next byte boundary. A record whose fields total 17..23 bitsis
padded to 24-bits (3 bytes). Figure 4-1 illustrates an example of a partia record.

Chapter 4 Defining and Initializing Data

Record Template:
Partial Record A:16, B:9

31 25 24 9 8 0
(Zero
Filled) A B
7 bits 16 bits 9 bits

W-3420

Figure4-1. Partial Record Definition Template

Examples

1. Thisexample defines a DWORD-sized record template, even though it specifies
30-hits total for itsfields (processor addresses must fall on byte boundaries).

ERRFLAGS RECORD | G 3=0, SYS: 3=0, MEM 24=" ABC

2. Thisexample defines arecord template for floating-point coprocessor single
precision reals (the template matches the fl oating-point coprocessor storage
format).

S| GNEDNUM RECORD SI GN: 1, EXP: 8, FRAC: 23

ASM 386 Assembly L anguage Reference Chapter 4 101

Record Allocation Statement

Syntax
[nanme] recnnx[exp][,...]>
Where:
nane isan identifier; name must be unique within the module.
recnm is the name of the record template that defines how bit-fields are to be
allocated for the variable of the type. recnmmay be followed by a
DUP clause.
exp isavalue that overrides the default field value allocated for the
record. exp must evaluate to a number that will fit in the field
specified in the record template definition) that is to be overridden; it
may be a? (undefined value).
Discussion

102

This statement allocates data in the form specified by the previously defined record
template. Default field values specified by the RECORD directive can be
overridden. The following rules must be observed for exp:

» To allocate arecord without overriding the default values, specify <> (no exp
values).

* Assuming arecord withfields<f 1, f2, f3, .. ., f n>, specify acommafor
each field with an acceptable default value and specify an overriding exp for
each f n to be overridden.

For example, use the following to override (f 3 and f 4) or f n, respectively:

<,,2,5>
< e, 2>

After the last field to be overridden, commas need not be specified for remaining
fields. Inthefirst preceding example, commas must be specified only for f 1 and
f2 (thef 5. . f n default values are acceptable).

» Usea? tooverride adefault field value (zero used).

» A field defined with a single string of two or more characters can be
overridden only with another string. The overriding string need not be the
same length as the record template's. If the overriding string is shorter than the
original string, the remaining characters of the default string are used. If the
overriding string is longer but still fitsin the field, the overriding string is used.
Otherwise, the assembler generates an error.

Chapter 4 Defining and Initializing Data

Examples

1. Thisexample allocates two record variables of type ERRFLAGS (this record
template is defined in Example 1 of the preceding section). FLAGS1 usesthe
ERRFLAGS default values without overrides. FLAGS overrides the defaults
defined with ERRFLAGS.

FLAGS1 ERRFLAGS<>
FLAGS ERRFLAGS<O, 3, 0>

2. Thisexample alocates and initializes two record variables of type SI GNEDNUM
(thisrecord template is defined in Example 2 of the preceding section). For
floating-point numbers, the sign bit is O for positive values and 1 for negative
values.

PLUSONE SI GNEDNUM <0, 7FH, 0>
M NUS16 SI GNEDNUM <1, 83H, 0>

ASM 386 Assembly L anguage Reference Chapter 4 103

STRUC Directive

Syntax

nanme STRUC
[field] storalloc
name ENDS

Where:

nane isan identifier for the structure template; nane must be unique within

the module.
field isan identifier; fi el d must be unique within the module.

storal l oc isaDBIT, DB, DW, DD, DP, DQ, or DT storage allocation statement.
The storage allocation statement may contain DUP clauses.
St or al I oc specifies the variable type of the corresponding field; it
may also specify the default initial value of thisfield for all
subsequently defined variables of type nane.

Discussion

104

The STRUC. . ENDS block defines atemplate named nane. The template nane
defines a symbol table entry whose size equals the total number of bytes specified
between STRUC and ENDS. Each fi el d nameis also defined in the symbol table,
together with its attributes.

A structure field name represents the logical address (an offset) of this field within
all structures of type nane. A field has two attributes: offset and type. The offset
of afield isthe number of bytes from the start of the structure to thefield. The
field's type depends on the storage allocation (storalloc) statement used in the
template.

Structure fields defined as contiguous variables of type Bl T are concatenated into
one or more bytes and zero-filled to the nearest byte boundary.

A question mark (?) can be used to allocate storage for non-BI T-type fields with
undefined initial values. If avalueis specified in the storage allocation statement,
it becomes the default value for the field. This default can be overridden by the
structure allocation statement described in the next section.

Fields defined with more than one st or al | oc specification (alist) and fields
defined with DUP (?) have non-overridable default values.

The assembler supports up to 150 structure fields that are defined with uninitialized
values and without nested DUPs.

Chapter 4 Defining and Initializing Data

Examples

1. Thisexample defines a structure for procedure parameters that would be
allocated on the stack. The EBP register would point to the procedure's stack
frame; its parameters could be accessed by name using the notation
[EBP] . fi el d. The Examplesin the next section include the dot operator.

See also: Dot operator, Chapter 5

TH S_PROC_PARAMS STRUC
OLD _EBP DD ?

RETURN DD ?

PARAML DD ?

PARAMR DW ?, ?

PARAMB DW ?, ?

TH S_PROC_PARAMS ENDS

The symbol THI S_PROC_PARANMS enters the symbol table as a structure 20
bytesin length. Thefivesynbol s OLD EBP, RETURN, PARAML, PARAM,
and PARAMB are defined as structure fields. OLD_EBP has type DWORD and an
offset of 0 within the structure; RETURN has type DWORD and an offset of 4.
PARAML has type DWORD and an offset of 8, PARAM? has type WORD and an
offset of 12, and PARAMB has type WORD and an offset of 16 within the
structure.

2. This example defines a 6-byte structure template for type PO NTER.

PO NTER STRUC
OFFST DD ?
SEGSEL DW ?

PO NTER ENDS

3. Thisexample defines a 16-byte structure template that represents a point on a
plane expressed in polar coordinates.

POLARPOI NT STRUC
RADI US DQ 0
ANGLE DQ 0

POLARPOI NT ENDS

ASM 386 Assembly L anguage Reference Chapter 4 105

Structure Allocation Statement

Syntax

[nane] strucnnx[exp][,...]>

Where:

nane

strucnm

exp

Discussion

106

isan identifier that defines the logical address for avariable. The
segment part of itslogical addressis the current segment and its offset
isthe current location counter; the binder can relocate the offset.
name must be unique within the module.

isthe name of a previously defined structure template. St r ucnmis
the variable's type; it specifies the variable's fields, their types, and a
variable storage size equal to the number of bytes allocated by the
template. St r ucnmmay be followed by a DUP clause.

isavalue that overrides the default field value given in the template
definition. Exp isaquestion mark (?) (except for fields of type Bl T),
aconstant expression, or astring enclosed in single quotes (*). If itis
not a?, its value must fit in the type specified for the corresponding
structure template field.

This statement all ocates storage based on a structure templ ate (see the preceding
section). The amount of storage allocated will be the number of bytes defined in
the template (multiplied by any DUP clauses).

Field values defined in the structure template are defaults. They may be overridden
in the storage allocation statement with certain restrictions. The following rules
must be observed for exp:

» To allocate a structure without overriding the default values, specify <> (no
exp values).

» Thedefault value specified in the structure template definition must be a?
(non-BI T fields only), a constant expression, or a character string used as a
default value for abyte (DB) field. The overriding value must fit within the

field.

» Template fields defined with more than one st or al | oc specification (alist)
and template fields defined with DUP (?) may not be overridden.

Chapter 4 Defining and Initializing Data

e Assuming astructurewith fields<f 1, f2, f3, . . ., f n>, specify acommafor
each field with an acceptable default value and specify an overriding exp for
each f mto be overridden.

For example, use the following to override (f 3 and f 4) or f n, respectively:

<,,2,5>
< e, 2>

After the last field to be overridden, commas need not be specified for
remaining fields. Inthefirst preceding example, commas must be specified
only for f 1 and f 2 (the f 5. . f n default values are acceptable).

A DB field initialized with a single string of two or more characters can be
overridden only with another string. The overriding string need not be the
same length as the template's. If the overriding string is shorter than the
origina string, the remaining characters of the original string are used. If the
overriding string is longer but still fitsin the field, the overriding string is used.
Otherwise, the assembler generates an error.

Examples

1. Thisexample allocates storage for a structure of type THI S_PROC_PARANMS
(this structure template is defined in Example 1 of the preceding section).

APROC THI S_PROC_PARAMS <>
To access afield of APROC, use the dot operator (e.g., APROC. PARAML).

However, a structure field is not irrevocably tied to the structure in which it is
defined. [EBP] . PARAM2 could be used in any context where you wanted a
BYTE variable that was offset by 4 bytes from the EBP base. It is not necessary
(and the assembler does not check) that the surrounding data pointed to by EBP
follows the template format defined for THI S_PROC_PARAMS. Assuming that
EBP has already been set to point to the beginning of this structure, APROC
parameters can be accessed as[EBP] . PARAML, [EBP] . PARAM?, and

[EBP] . PARAMB.

2. Thisexample alocates storage for and initializes a structure of type
POLARPQO NT (this structure template is defined in Example 3 of the preceding
section). This structureisinitialized with radius 2.0 and angle 3.1416,
overriding the template's specification (uninitialized storage for the field
values).

VALUE1 POLARPO NT<2.0, 3. 1416>

To perform any calculations using VALUEL, refer to the fields of this structure
as VALUEL. RADI US and VALUEL. ANGLE in the instruction.

ASM 386 Assembly L anguage Reference Chapter 4 107

3. Thisexample allocates storage for an array of 20 structures of type
POLARPO NT, each initialized with the same two data values.

POLPT_ARRL POLARPOI NT 20 DUP (<2.0, 3.1416>)

4. Thisexample defines a structure template with overridable fields, and allocates
storage for avariable that overrides the default STRUC val ues.

OVERRI DABLE STRUC

ASTRI NG DB ' ABCDEFG
DONTCARE DW ?
AREAL DD 3. 14159

OVERRI DABLE ENDS
VARO OVERRI DABLE <'HI J', 1, 1E- 23>

5. This example defines a structure template with fields that may not be
overridden (see the Discussion section).

NONOVERRI DE STRUC

ALIST DB 1,2,3 ; cannot override |ist
; of default val ues
ADUP DW 10 DUP (?) ; cannot override defaults

; specified with DUP
NONOVERRI DE ENDS
6. These equationsillustrate results when multiple dot operators are used in an

expression. Given the following structure template definitions and address
expression using the dot operator:

FOO STRUC

FE DB O ; offset fromFOO =0
FI DWO ; offset =1

FOO ENDS

BAA STRUC

FO DB O ;. offset fromBAA = 0
FUM DD 0O ; offset =1

BAA ENDS

[EBP] . FE. FI . FO. FUM =
[EBP] + 0 +1 + 0+ 1 =[EBP] + 2

Theresult's type is the same as the rightmost field specification, DWORD
(=FUM'sin this example). However, the result's type can be overridden with
the PTR operator as follows:

WORD PTR [EBP] . FE. FI . FO. FUM

The PTR expression has the same value as[EBP] . FE. FI . FO. FUM but type
WORD.

Seealso: PTR operator, Chapter 5

108 Chapter 4 Defining and Initializing Data

DUP Clause

A DUP clause reserves storage for a sequence of variables of asingle type. Use DUP
with any DBIT, DB, DW, DD, DP, DQ, or DT storage allocation statement to
define an array-like variable. Such avariable's elements can be accessed as
multiples of aconstant offset from the initial element; the constant value equals the
size of the element type. Use DUP with any record or structure allocation statement
to allocate contiguous storage for an array-like variable whose elements are records
or structures.

Syntax
rep-val DUP (val[,...])
Where:

rep-val specifiesthe number of storage unitsto be allocated. A storage unit is
one of the following: BI T, BYTE, WORD, DWORD, PWORD, QWORD,
TBYTE, or previously specified (named) record or structure template.

val isany initialization expression (i ni t or exp) that isvalid for the
specified storage unit, or it is another DUP clause.

Discussion

DUP allocates storage for and optionally initializes an array-like variable with
elements of asingle type. DUP is an optional part of any storage allocation
statement, including arecord or structure allocation statement. For avariable
allocated with DBIT, DB, DW, DD, DP, DQ, or DT, specify a DUP clause as
follows:

[name] dtyp rep-val DUP (init[,...])

For avariable allocated with arecord or structure template name, specify a DUP
clause asfollows:

[name] recnm rep-val DUP (<[exp][,...]>)
or
[nane] strucnm rep-val DUP (<[exp][,...]>)

For non-BI T-type variables, DUP can be used to reserve storage space without
producing a datainitialization record in the object module. The syntax

rep-val DUP (?)

reserves storage space with undefined values. The amount of reserved space
depends on the rep-val specified and the storage allocation size specified by the
directive or template that precedes DUP.

ASM 386 Assembly L anguage Reference Chapter 4 109

The assembler allows DUP clauses to be nested up to the limit of the symbol table
memory space for simple types. For structure types, thislimit islessthan 150. The
assembler fills DUP (?) specifications within a structure with zeros.

The assembler fills any other DUP(?) storage allocations with zeros when an
initialization value is specified in the storage all ocation statement. Specify ? for
every initialization value when you want totally undefined storage in the object
file. However, variables defined with DBIT may not be initialized with the

question mark.
Examples
1. These examples use DUP to initialize bit patterns.
THE BITS DBIT 2 DUP (10b) ; initializes 2 bytes
; at THE BITS to
; 00000010
; 00000010
BIGBITS DBIT 4 DUP (11011B) ; initializes 4 bytes
; at BIGBITS to
; 00011011
; 00011011
; 00011011
; 00011011

2. Thisexampleinitializes 50 bytes; each group of five bytes contains the value
48454CACAFH.

BYTES1 DB 10 DUP (' HELLO)
3. Thisexampleinitializes 400 bytes.
ADDEXPS DW 100 DUP (1, OFFFFH, 15, 10101010B)

4. These examplesinitialize 420 bytes and reserve 40 bytes of uninitialized
storage.

MANYDUPED DB 3 DUP(4 DUP(5 DUP(1, 6 DUP (0))))
NO NI T DD 10 DUP (?)

5. Thisexample allocates contiguous storage for an array of 20 structures of type
POLARPO NT. Each structure is initialized with the same two data values.

POLPT_ARRL POLARPOI NT 20 DUP (<2.0, 3.1416>)
See also: POLARPQO NT, Example 3 of the STRUC directive, in this chapter

110 Chapter 4 Defining and Initializing Data

Labels

A label isaname that defines alogical address within an assembler program:

» Thelocation counter is a predefined label that keeps track of the current offset
within a segment being assembled. The ORG, EVEN, and ALI GN directives
control the location counter.

* TheLABEL directive creates a name for the current location of assembly in
code or data segments.

* A labeled instruction in the code segment might be the target of aJMP or
conditional jump instruction. If both the jump and labeled instructions arein
the same segment, the (NEAR) label can be a name followed by a colon (:) that
immediately precedes the target. The LABEL directive must be used to define
aFAR label (the labeled target instruction is not known to be in the same
segment as the jump instruction). The LABEL directive may also be used to
define a NEAR label.

* A labeled sequence of instruction(s) in the code segment might be the target of
aCALL instruction. The PROC directive defines a NEAR or FAR label for such
an instruction sequence. The target sequenceis usually interpreted as a
subroutine or procedure.

L abels in code segments can be operands of the CALL, JMP, and conditional jump
instructions.

See also: CALL, JMP, and conditional jump instructions, Chapter 6

ASM 386 Assembly L anguage Reference Chapter 4 111

Label Attributes

112

A label has four attributes:
Segment Thein which it was defined

USE The USE attribute (USE32 or USE16) of the segment in which it was
defined: this determines the size of the label's logical address.

The label's of fset
Thisisthe label's distance from the base of its defining segment.
Offset isa 32-bit value for labels in USE32 segments and a 16-bit
value for labelsin USE16 segments.

The label's type
For labels in a data segment, thisis the type of the target location (a
variable or defined storage location). For labels that target code, the
type indicates the kind of jump or CALL that will be made to the
location it represents. These two types are as follows:

* Type NEAR represents alabel that can be accessed by ajump or
call that lies within the same physical segment. Thiskind of
accessis called an intrasegment jump or call. Thelogical
address defined by a NEAR label is a simple offset within the
same segment.

» TypeFARrepresents alabel that can be accessed from another
segment. Thiskind of accessiscalled an intersegment jump or
call. Because control istransferred from one segment to
another, the contents of the CS register must be changed when
the jump or call occurs. Thelogical address defined by a FAR
label isa16-bit segment selector with 32-bit offset. The JVP,
conditional jump, or CALL instruction will load this address
into CS: El P when it executes.

Chapter 4 Defining and Initializing Data

The Location Counter

The location counter is a predefined label represented by the symbol $. The value
of the location counter is the current offset within the segment being assembled.
The location counter has the following attribute values:

e Segment -- current segment
* Offset -- current offset

e USE -- current segment's

* Type-- NEAR

The $ may be used as an operand of instructions or expressions. The assembler
will maintain the correct offset within a segment even if the segment is repeatedly
opened and closed in the module with SEGVENT. . ENDS pairs.

See also: SEGVENT. . ENDS pairs, Chapter 2

Three directives control the location counter

ORG Sets the counter to a specified value.
EVEN Sets the location counter to the next dword or word.
ALl GN Sets the location counter to the next value that is evenly divisible by

the specified number.

ASM 386 Assembly L anguage Reference Chapter 4 113

ORG Directive

Syntax
ORG exp
Where:
exp isaconstant expression or alabel that is evaluated to a number in the
range of 0 to 232 - 1 (4 gigabytes) in USE32 segments or in the range
of 0to 65536 in USE16 segments.
Discussion

Use the ORG directive to control the location counter value. An ORG expression
locates code or data at a specified offset within the current segment.
Examples

These examples use the value of the current location counter as an operand. The
first example sets the location counter to a value 1000 bytes beyond the current
location. The second example overwrites the just assembled 1000 bytes.

ORG OFFSET($ + 1000)

ORG OFFSET($ - 1000)

EVEN Directive

Syntax
EVEN

Discussion

The EVEN directive ensures that the location counter is a dword or word boundary
for subsequent code or data.

The assembler inserts (if necessary) up to three NOPs (90H) following EVEN to align
subsequent code to the nearest dword (for USE32 segments) or word (for USE16
segments). In the data segment, the EVEN directive pads with zeroes to align
subsequent data to the nearest dword (for USE32 segments) or word (for USE16
segments).

114 Chapter 4 Defining and Initializing Data

ALIGN Directive

Syntax
ALl GN[exp]
Where:
exp is any nonrelocatable constant expression that evaluates in the range 1
to 256. The ALI GNdirective aligns subseguent code or data on an
offset that is evenly divisible by the specified number of bytes.
Discussion

The ALI GN directive sets the location counter to the specified boundary for the
subsequent alignment of code or data.

The assembler inserts NOP instructions (90H) if necessary to align subsequent code
to the specified boundary. When used in a data segment, the assembler pads to the
specified boundary with zeroes.

If exp isomitted, the default is 4-byte, or DWORD, alignment.

For example, the following directive causes paragraph (16-byte) alignment:
ALI GN 16

As another example, the following directive causes page (256-byte) alignment:
ALI GN 256

ASM 386 Assembly L anguage Reference Chapter 4 115

LABEL Directive

Syntax
name LABEL type
Where:
nane is an identifier; name must be unique within the module.
type iSNEAR or FAR, avariable type (Bl T, BYTE, WORD, DWORD, PWORD,
QWORD, or TBYTE), alabel name, arecord template name, or structure
template name. Label, record, and structure names cannot be forward
references.
Discussion

116

LABEL creates a name for the current location of assembly, whether data or code.
Use LABEL to define avariable or alabel that has the following attributes:

* The segment that is currently being assembled
* Thecurrent offset within that segment

* The USE attribute of the current segment

* The specified type

Labels of type FAR must be defined with the LABEL directive. NEAR |labels need
not be defined with LABEL but they can be. NEAR- and FAR-type labels may not be
overridden.

Seealso: Attribute override operators, Chapter 5

It ispossible use LABEL to alias a FAR label to aNEAR label. However, aliased
labels of opposite types can be used only as JMP or conditional jump operands. It
isan error to CALL the same procedure twice with aliased NEAR and FAR labelsif a
return from the procedure is expected. The RET instruction coded within a
procedure is either near or far; it cannot be both.

Chapter 4 Defining and Initializing Data

Examples

1. Thisexample allows two consecutive bytes to be accessed both as a WORD and
astwo different BYTES.

AVORD LABEL WORD
LOWBYTE DB 0O
H GHBYTE DB 0

2. Thisexample sets up three ways of accessing the same data location.
Bl T_ARRAY, TBYTE_ARRAY, and WORD ARRAY all refer to the same data
locations as BYTE_ARRAY; they provide alternate forms of addressing it.

BYTE_RECORD RECORD B7: 1, B6:1,B5:1,B4:1,
& B3:1,B2:1,Bl:1,B0:1

Bl T_ARRAY LABEL BYTE_RECORD
TBYTE_ARRAY LABEL TBYTE
WORD_ARRAY LABEL WORD

BYTE_ARRAY DB 100 DUP (0)

3. Thisexample shows both NEAR and FAR labels at the same code location.
Even though thereisa CALL at this location, this example will not cause an
error. The ABORT_MESSAGE routine does not return to the location that
jumped to ABORT_FAR or ABORT_NEAR.

ABORT_FAR LABEL FAR

ABORT_NEAR:

CALL ABORT_MESSAGE

JWP EXIT ; do not RET to caller

ASM 386 Assembly L anguage Reference Chapter 4 117

Defining Implicit NEAR Labels

Syntax
I bl nane: [i nstruct]
Where:
I bl name isanidentifier; / bl name must be unique within the module.

i nstruct isaninstruction.

Discussion

A label within the same segment is merely a name followed by a colon (:). Such a
label has the following attributes:

* The current segment being assembled

* Thelabel's offset (the current value of the location counter)
» The current segment's USE attribute

* Thedefault label type, NEAR

If no target instruction is specified, ajump to the label causes the instruction
following the label to be executed. Thisform of label is equivalent to the
following:

I bl name LABEL NEAR

Example
ALAB: MOV EAX, COUNT

118 Chapter 4 Defining and Initializing Data

PROC Directive

Syntax
name PROC] t ype] [WC(exp)]
nane ENDiD .
Where:
nane isan identifier; name must be unique within the module.
type iSNEAR or FAR. NEAR s the default.
exp is the number of dwords (USE32 segment) or words (USE16 segment)
of parametersto be transferred to the more privileged stack during an
interlevel call. Exp must evaluate to an integer in the range 0..31.
Discussion

PROC defines a label for a sequence of instructions that are interpreted as a
subroutine or procedure of type NEAR (called from within the same segment) or
FAR (called from another segment).

The type specified with PROC tells the assembler whether to generate a near or far
RET instruction for the procedure operand. A RET (return) instruction coded
between PROC. . ENDP has the same type (near or far) asits enclosing routine. Itis
an error if paired CALL- RET instructions have mismatched near/far attributes.

If PROCLEN is specified between PROC. . ENDP, it returns OFFH if the procedureis
of type FAR. PROCLEN returns O for al other cases.

See also: PROCLEN, Chapter 9

The assembler allows procedures to be nested. However, nested procedures do not
behave like nested procedures in some high-level languages:

* Theassembler does not have scope rules for programmer-defined names.
Every variable and label in a module must have a unique identifier.

* Theassembler is not a block-structured language. A nested procedure is coded
within the instruction sequence of another routine. Unless the containing
routine jJumps around the nested procedure, the nested procedure will execute
when its containing routine executes. Furthermore, a nested procedure may
cause some of the containing routine's code to be skipped because a RET from
the nested procedure also causes a return from its containing routine (see
Example 3).

ASM 386 Assembly L anguage Reference Chapter 4 119

Examples

120

1.

The assembler has both near and far CALL and RET instructions. Whether a
CALL isnear or far depends on the type of its procedure operand. The
following is an example of a NEAR procedure with its appropriate call.

LOCALCODE SEGMVENT ER PUBLIC
ANEARPROC PROC NEAR

R ;. sone code
RET . near return
ANEARPROC ENDP
CALL ANEARPRCC : near call

S ; (intrasegnent)
LOCALCODE ENDS
This example shows a FAR procedure and its call.

GLOBALCODE SEGVENT ER

AFARPROC PRCC FAR
R ;. sone code

RET ; far return

AFARPROC ENDP

G_OBALCODE ENDS

SPECSEG SEGVENT ER
CALL AFARPRCC ; far CALL

N ; (intersegnent)
SPECSEG ENDS

Chapter 4 Defining and Initializing Data

3. When one procedure is defined within another, execution can fall into the
nested procedure.

P1 PROC NEAR

MOV AX, 15 ; execution begun here will
conti nue
ADD DX, AX ; through to the second MOV
AX, 0
P2 PROC NEAR
MOV AX, O
CVP AX, COUNT
JE LAB
DEC COUNT

LAB:

MOV AX, O

RET ; exit Pl and P2 here
P2 ENDP ; remaining statenents
CWP DX, 10 ; Will never be executed
JE LAB

RET
P1 ENDP

ASM 386 Assembly L anguage Reference Chapter 4 121

Using Symbolic Data

Assembler label and variable names are symbolic data. All programmer-defined
identifiers referenced in assembler programs are symbolic data. Assembler
keywords and reserved words are symbols, as well.

Seedso: Assembler keywords and reserved words, Appendix C

Both labels and variables define logical addresses that represent values. A label
identifier's value isthe logical addressit defines. A variableidentifier'svalueisthe
contents of the logical address it defines.

The EQU directive assigns new names to symbols. The PURGE directive directs the
assembler to omit object file information about particular EQUated symbols and
programmer-defined symbols.

122 Chapter 4 Defining and Initializing Data

EQU Directive

Syntax
name EQU val ue
Where:
nane isan identifier; name must be unique within the module.
val ue isavariable or label nhame, a constant or register expression, a

processor register, a floating-point stack element, a mnemonic, or
instruction prefix, a codemacro call or prefix, or the operators NOT,
AND, OR, XOR, SHL, or SHR. val ue can be any address expression.

See also: Floating-point stack elements, Chapter 7
mnemonics, Chapters 6 and 7
instruction prefixes, Chapter 6
codemacro calls or prefixes, Chapter 9
address expressions, Chapter 5

Discussion
EQU assigns avalue to an identifier. In effect, EQU creates either:
e Analiasfor asymbol'svaue

* Anidentifier for an assembly-time constant or run-time expression value.

If the assigned value is avariable or label name, it can be forward referenced.
The EQU directive defines another pointer to such avariable or label. However, the
assigned value may not be an expression that contains a forward reference.

A global integer constant can be created by specifying the EQUated name in a
PUBLI C statement. The value of such a global constant must be in the range:

e -281 (281-1) inUSE32 segments
e -32,768..32, 767 inUSE16 segments

The precision of an EQUated real expressed in decimal notation is determined in
context. The name equated to these values can initialize data of more than one
type. Floating-point numbers expressed in hexadecimal real notation also may be
used as EQU values. However, the names equated to these values can only be used
to initialize data of asingle type.

Register expression values can include a segment override.

See also: PUBLI C statement, Chapter 3
DD, DQ, and DT directives, in this chapter

ASM 386 Assembly L anguage Reference Chapter 4 123

Examples

124

1.

This example makes a forward reference to a value represented by the label
ALAB.

ALABEL EQU ALAB
ALAB: MOV EAX, 0

This example defines aliases for processor registers.

COUNT EQU ECX

PNTR EQU EBX

MOV COUNT, 10 ; ECX = 10

MOV PNTR, OFFSET ARRAY ;. EBX of fset of array

This example defines aliases for the MOV and | NC instructions.

DATAMOVE EQU MOV
| NCREMENT EQU | NC
DATAMOVE EAX, EBX
| NCREMENT EAX

These examplesiillustrate integer and floating-point constant value
specifications. A floating-point constant specified in decimal can initialize
data of more than one type; the precision of such values is determined in
context. A floating-point constant specified in hexadecimal real can initialize
asingle type of data (DWORD, QWORD, or, as here, TBYTE).

TOTAL EQU 6
Pl EQU 3. 141592653589793

DD PI ; single precision

DQ PI ; doubl e precision
DEG TO RAD EQU 3FF98EFA351294E9C8AER ; P/ 180
DT DEG_TO_RAD ; extended precision

This example illustrates assembly-time initializations.

El EQU 2 + 3
E2 EQU E1 AND 4
E3 EQU (E1-E2) / 12

This example uses EQU to define variables to be accessed on the stack.

STKWRD EQU WORD PTR [EBP+2]
ONEVAR EQU SS: [EBX+3]
TWOVAR EQU SS: [EBX]

Chapter 4 Defining and Initializing Data

PURGE Directive

Syntax
PURGEnane[, . . .]
Where:
nane isasymbolic data identifier.
Discussion

PURGE del etes the definition of one or more specified symbols. Labels, variables,
and keyword or register aliases defined with EQU can be purged.

The following kinds of symbols cannot be purged:
* Namesdeclared PUBLI C

* Register names

* Assembler reserved words

See also: PUBLI C names, Chapter 3
Assembler reserved words, Appendix C

A purged symbol remains undefined unlessit isredefined. A reference to a symbol
after it has been purged but before it is redefined constitutes a forward reference to
the redefinition. If no redefinition occurs, such areferenceis an error.

A PURGE coded just before the program END statement causes the assembler to
delete object file symbol information about purged symbols.

Examples

1. Thisexample deletes aliases (defined with EQU) for an assembler instruction
and a processor register.

DATAMOVE EQU MOV
COUNT EQU ECX
PURGE DATAMOVE, COUNT

2. For the variable and label specified in this example, the assembler will omit
symbol information from the object file for the module.

PURGE ALABEL, VAR1
END ; nmodul e

[W

ASM 386 Assembly L anguage Reference Chapter 4 125

Accessing Data

This chapter contains four major sections:
* Overview of assembler expressions

This section introduces constant and address expressions.
* Operators

This section explains the assembl er isolation, multiplication and division, shift,
addition and subtraction, relational, logical, attribute value, attribute override,
and record specific operators.

* Instruction Operands
This section summarizes the operands to assembler instructions.
* Memory Addressing Methods

This section explains the forms of assembler address expressionsin detail.

Overview of Assembler Expressions

Expressions contain operands and operators. An assembler expression specifies
either:

* Avauethat initializes data. Such avalue must be a constant expression, an
external constant, or arelocatable address expression.

e Or, an addressin memory that may be an instruction operand. Thisis
sometimes called an address expression.

Constant expressions specify values that are known at assembly time. Address
expressions specify values that might not be known at assembly time; they
represent an address that will be accessed during program execution on the
processor. The contents at such an address might be modified during program
execution.

ASM 386 Assembly L anguage Reference Chapter 5 127

For an assembler instruction to operate on data, the data must be accessible as an
instruction operand. Some instructions have implicit operands such as registers.
However, most instructions require explicit operand(s). An instruction operand can
be expressed as aregister, a constant, alocation in memory, or as a combination of
these components.

Some operands can be specified as expressions consisting of a series of variable
names, base and index registers, and constants combined by operators. For
example, the contents of a register and a constant could be added with the addition
operator.

There are many assembler operators that can be used to create expressions.

Constant Expressions

Constants (see Table 4-2) can be used as expression operands with most assembler
operators (see Table 5-1). The storage allocation directives (described in

Chapter 4) initialize data values using constant expressions. Constant expressions
yield avaue that is known at assembly time.

However, a symbolic constant defined in another module has an unknown value at
assembly time. When modules are combined, such a constant's value replaces each
external reference to the constant. For example:

EXTRN ANUMVBER: ABS

DATA SEGVENT

AWORD DW ANUMBER ; AWORD gets val ue of ANUMBER
: when nodul es conbi ned

DATA ENDS

External symbolic constants do not form constant expressions.
See also: PUBLI Cdirective, Chapter 3

Address Expressions

An address expression defines a location in memory. Thislocation can be
interpreted as either avariable or label, depending on the expression used. Every
address expression has a simple type (Bl T, BYTE, WORD, DWORD, PWORD, QWORD,
TBYTE, NEAR, or FAR). The rulesfor address expression formation preclude
mixing variable or |abel types unless the PTR operator coerces uniformity of type.

See also: PTR operator, in this chapter

128 Chapter 5 Accessing Data

Variable and Label Names as Address Expressions

The simplest address expression is the name of avariable or label. In this case, the
name implies addressing using the variable's or label's offset from its defining
segment's base address. This addressiis relocatable.

For example:
ADD DX, COUNT ; COUNT is a sinple address expression
ADD DX, COUNT + 2 ; In this case, address expression has

; the same segnent and type as COUNT
; but has an offset that is 2 greater

Register Expressions

A register expression is an address expression that uses a base and/or an index
register. Possible forms are:

[base-reg] or [index-reg * scal €]

[base-reg + index-reg * scal €]

[base-reg + disp] or [index-reg * scal e + disp]
[base-reg + index-reg * scal e + disp]

Where:

base-reg isany 32-bit general register (EAX, ECX, EDX, EBX, ESP, EBP,
ESI, EDI) for 32-bit addressing, and is BX or BP for 16-bit
addressing.

i ndex-reg isany 32-bit general register except ESP for 32-bit addressing, and is
Sl or DI for 16-bit addressing.

scal e is (an optional) constant or constant expression that evaluatesto 1, 2,
4, or 8 for 32-hit addressing. It isinvalid for 16-bit addressing.

di sp isan 8- or 32-bit displacement for 32-bit addressing, and isan 8- or
16-bit displacement for 16-bit addressing.

At assembly time, a simple register expression operand is called an anonymous
reference. The data addressed by a named register has no explicit type (Bl T, BYTE,
WORD, DWORD, PWORD, QAORD, TBYTE, or record/structure template name).

ASM 386 Assembly L anguage Reference Chapter 5 129

For atwo-operand instruction with one register operand, the assembler determines
the type of an anonymous reference from the size of the register. For example:

MOV CX, [BX] ; nmove WORD data pointed to by BX into CX

For al other kinds of anonymous references, the PTR operator must be used to
specify atype. For example:

MOV WORD PTR [DI], 5 ; assign 2 bytes
I NC BYTE PTR [BX] +2 ; increnents 1 byte
Combining Simple Address and Register Expressions

Register expressions can be combined with simple address expressionsto form a
more complex address. Theformiis:

varnane [reg-exp]
Where:
varnanme isthe name of avariable.

reg-exp isaregister expression (see the preceding section) enclosed in
brackets.

The register expression implies that the address of the operand will be computed
from the run-time contents of the register. For example:

COUNT[EBX] ; sinple base
COUNT[EBX] + 2 ; base plus displacenment
COUNT[EBX] + [ESI] ; base plus index

For the preceding examples, the offset of the variable COUNT will be added to the
contents of the register(s) in the register expression.

See also: Implicit bracket addition, Addition and Subtraction Operators, in this
chapter
Processor registers and memory addresses, Appendix A

130 Chapter 5 Accessing Data

Structure Fields in Address Expressions

Another form of address expression uses a structure field name as a displacement
added to a structure's offset within its segment.

For avariable of a structure type, afield name represents an offset within the
structure. The field name can be combined with a named variable of the same type
asthefield or with aregister expression to form an address expression. Such an
address expression has the following attributes:

Itssegment Thisisthe same asthe variable's, or it is the processor default for the

register.

Itsoffset Thisisthe offset of the variable or register expression plus the offset
of the field within the structure.

Itstype Thisisthe type defined in the structure template for the field. 1f more
than one structure field is specified, the rightmost field determines the
address expression's type.

For example, consider the following structure definition and instruction results:

ASTRUC STRUCTURE
ABYTE DB 0O
AVORD DW 0O
BYTE2 DB 0

ASTRUC ENDS

ANARRAY DB 1, 2, 3,4

MOV AL, ANARRAY. BYTE2
MOV CX, ANARRAY. AWCRD

MOV BX, OFFSET ANARRAY

MOV AL, [BX] . ABYTE

ASM 386 Assembly L anguage Reference

offset = 0
offset =1
offset = 3

ANARRAY. AWORD has type WORD

AL := 4

CX := 0302H

BX hol ds of f set

AL := 1 [BX].ABYTE has type BYTE

Chapter 5 131

Relocatable Expressions

Address expressions involving named variables, labels, and segments can have
results that might not be known until all program modules have been assembled,
combined, and located. Such expressions are called relocatable. The system
utilities assign values to such address expressions.

The assembler automatically generates relocatable addresses for valid symbolic
references in code segments.

See also: Relocatable and non-relocatable address generation, ASSUME
directive, Chapter 2

The assembler also generates various kinds of rel ocatable addresses for symbolic
references in data segments:

1. A segment name in an address expression represents the logical address of its
selector. A segment name that is referenced in another data segment forms a
base relocatable address. For example, DATAL is base relocatablein the
following:

DATA1 SEGVENT

DATA1 ENDS

DATA2 SEGVENT
SEGBASE DW DATA1 ;. SEGBASE cont ai ns base

: rel ocat abl e address of DATA1l
DATA2 ENDS

2. A variable or label name in a data segment address expression forms an offset
relocatable address under either of the following conditions:

* Thevariable or label is defined in a USE32 segment and its name is used
to initialize avariable of type DWORD.

* Thevariableor label is defined in a USE16 segment and its name is used
to initialize avariable of type WORD.

For example, ABYTE + 2 forms an offset relocatable address in the following:

DATA SEGVENT USE32

ABYTE DB 0

AN_CFFSET DD ABYTE + 2 ; AN _OFFSET contains offset
: rel ocat abl e address of

DATA ENDS ; ABYTE + 2

132 Chapter 5 Accessing Data

3. A variable or label name in a data segment address expression forms a pointer
relocatable address under either of the following conditions:

e Thevariable or label isdefined in aUSE32 or USE16 segment and its
nameis used to initialize a variable of type PWORD.

* Thevariableor label is defined in a USE16 segment and its name is used
to initialize avariable of type DWORD.

For example, ABYTE forms a pointer rel ocatable address in the following:

DATA SEGVENT USE32

ABYTE DB 0
A PO NTER DP ABYTE ; A_PO NTER cont ai ns poi nter

: rel ocat abl e address of ABYTE
DATA ENDS

Expressions with external constant operands also have results that are unknown at
assembly time; the value of an EXTRN: ABS constant is supplied when modules are
combined. Any address expression with symbolic operands might have results that
cannot be determined until the program islocated. The system utilities must
supply these values.

For these reasons, there are restrictions on the use of rel ocatable expressions with
some operators. These restrictions are noted in the operator descriptionsin the
following sections.

ASM 386 Assembly L anguage Reference Chapter 5 133

Operators

Table 5-1 summarizes the assembler operators. These operators are explained in
detail later in this section.

Table5-1. Assembler Operators

Operator Description
Isolation Operators (1 Operand)
HIGHW Returns high-order word of dword operand Returns low-order
LOW word of dword operand
HIGH Returns high-order byte of word operand
LOW Returns low-order byte of word operand
Multiplication and Division (2 Operands)
* Multiplies one operand by another
/ Divides one operand by another
MOD Takes the modulus
Shift Operators (1 Operand)
SHR Shift operand bits right
SHL Shift operand bits left
Addition and Subtraction (2 Operands)
+ Adds operands
- Subtracts one operand from another
Relational Operators (2 Operands)
EQ If operands equal, returns -1; otherwise, O
NE If operands not equal, returns -1; otherwise, O
LT If 1st operand < 2nd, returns -1; otherwise, 0
LE If 1st operand <= 2nd, returns -1; otherwise, 0
GT If 1st operand > 2nd, returns -1; otherwise, 0
GE If 1st operand >= 2nd, returns -1; otherwise, 0
Logical Operators (2 Operands, except NOT)
OR If either operand's bit = 1, result bit = 1; otherwise, 0
XOR If operands' bits different, result bit = 1; otherwise, 0
AND If both operands' bits = 1, result bit = 1; otherwise, 0
NOT If operand bit = 1, result bit = 0, and vice versa
continued
134 Chapter 5 Accessing Data

Table5-1. Assembler Operators (continued)

Operator Description
Attribute Value Operators (1 Operand)
THIS Defines variable or label at current assembly location
SEG Returns segment selector of specified variable or label
OFFSET Returns offset of variable or label
BITOFFSET Returns bit offset of bit variable
LENGTH Returns number of storage units allocated for variable
TYPE Returns encoded value for variable or label type
SIZE Returns number of bytes allocated for variable
STACKSTART Returns offset of first (d)word above stack segment
Attribute Override Operators (1 Operand)
Sreg: Overrides default segment attribute of a variable or label
PTR Overrides variable's or label's type
SHORT Specifies that forward-referenced label is within 127 bytes of the
end of a jump instruction
Record Specific Operators (1 Operand)
MASK Masks specified field with 1's
ShiftCount Shifts bits in record by size of specified field
WIDTH Returns number of bits in record or field

ASM 386 Assembly L anguage Reference Chapter 5 135

Operator Precedence

Table 5-2 lists classes of assembler operatorsin decreasing order of precedence.

Table5-2. Assembler Operator Precedence

Highest Precedence

1. Parenthesized expressions, angle-bracket (record) expressions,
square- bracket expressions, the structure "dot" operator, and the
operators LENGTH, SIZE, WIDTH, MASK, and STACKSTART

2. PTR, OFFSET, BITOFFSET, SEG, TYPE, THIS, and the segment
override (CS:, DS;, ES:, FS:, GS;, or SS:)

3. HIGHW, LOWW, HIGH, and LOW

4, Multiplication, division, and shifts: *, / , MOD, SHR, SHL

5. Addition and subtraction: +, -
a. unary
b. binary

6. Relational: EQ, NE, LT, LE, GT, GE

7. Logical NOT

8. Logical AND

9. Logical OR and XOR

10. SHORT

Lowest Precedence

Assembler expressions are evaluated from left to right following these precedence
rules. If two operators with equal precedence are adjacent, the leftmost operator
has precedence. Override this order of evaluation and/or operator precedence by
using parentheses.

136 Chapter 5 Accessing Data

Isolation Operators

Syntax
H GHW nunber 32
LOWN nunmber 32
H GH nunber 16
LOW nunber 16
Where:

number 32 isaconstant expression that evaluates to a 32-bit number.

number 16 isaconstant expression that evaluates to a 16-bit number.

Discussion

The H GHWand LOWNoperators return the high and low WORDs, respectively, of the
32-bit operand.

The Hl GH and LOwoperators return the high and low BYTES, respectively, of the
16-bit operand.

When applied to aWORD value, Hl GHwreturns 0. When applied to aBYTE value,
HI GHreturns 0.

Examples

1.

These examples contrast H GH with LOwWand H GHWwith LONNas operators on
the same values.

MOV AH, H GH 1234H ; AH 1= 12H
TENHEX EQU LOW 1234H ; TENHEX : = 34H
MOV AX, HI GHW 12345678H ;o AX 1= 1234H
MOV CX, LOWN 12345678H ; CX := 5678H

These equations illustrate the results when HI GH/ LOwWand HI GHW LOWV
operator pairs are applied to each other.

H GH LOW nunber = 0

H GHW LOAW nunmber = 0

LOW HI GH nunber = HI GH nunber
LOMNV Hl GHW nunber = H GHW nunber

Hl GHW HI GHW nunber = 0 ; H GHW applied to WORD
LOW LOW nunmber = LOW nunber
H GHW HI GH nunber = 0 ; H GHW applied to BYTE

ASM 386 Assembly L anguage Reference Chapter 5 137

3. These examples use more than one isolation operator in the same expression,
with one expression in parentheses. Compare results for the first and second
examples. The second example reverses the first exampl€'s operators.

MOV AL, LOW (HI GHW 12345678H) DAL
MOV AL, HI GHW (LOW 1234H) . AL

= 34H

:= 0 because

; H GHW applied to BYTE

MOV AL, HI GH (LOWN 12345678H) ; AL

Multiplication and Division Operators

Syntax
Multiplication: oper and* oper and
Division: operand | operand
M odulo: oper and MOD oper and
Where:

operand isaconstant expression.

Discussion

Use these operators only with constant expressions.

= 56H

The result of a multiplication, division, or modulo operation is always an absolute
number. The result of a multiplication must be no greater than 32-bits, or an

overflow error will occur.

Examples
CWP AL, 2 * 4 ; conpare AL to 8
MOV CX, 123H / 16 ; CX := 12H
ADD AX, 102 MOD 4 o AX 1= AX + 2

138 Chapter 5

Accessing Data

Shift Operators

Syntax
Shift right: oper and SHR count
Shift left: operand SHL count
Where:
operand isaconstant expression.
count is a constant expression that evaluates to an ordinal; count represents
the number of bits the operand is to be shifted.
Discussion

The shift operators cause a bit-wise shift of the operand; it is shifted count bitsto
theright or left. Bits shifted into the operand are Os.

In effect:
» Shiftsto the left multiply the operand by 2 to the power specified by count .
» Shiftsto theright divide the operand by 2 to the power specified by count .

Examples
MOV BX, OFACBH SHR 4 ;. BX : = OFACH
ADD AL, 111000B SHL 2 ;11100000 added to contents of AL
MOV BL, (OFACBH AND 0111000B) SHR 3 ; BL := 001B

; (bits 3,4,5)

ASM 386 Assembly L anguage Reference Chapter 5 139

Addition and Subtraction Operators

Syntax

Addition: oper and + oper and

Bracket Addition: primary [exp]

Subtraction: operand - operand
Where:

operand isaconstant expression, or avariable or label defined in the current

module in the same segment.

primary isaconstant expression, an ordinal, the name of arecord variable

exp

followed by arecord initialization, a string, a simple type name,
NEAR, FAR, or PROCLEN, enclosed in brackets or parentheses.
PROCLEN within a PROC. . ENDP returns the value OFFH for aFAR
procedure; otherwise, PROCLEN returns 0.

iS a constant expression.

Discussion

Only constant expressions can be added or subtracted. The construct enclosed in
brackets ([]) alters operator precedence and implies that an addition operator
precedes the bracketed expression (see Example 2).

Variables, labels, or identifiers that have been EQUated to labels or variables cannot
be added or subtracted unless they have been defined in the current module and are
in the same segment.

Examples

140

1.

This example illustrates assembly-time expressions.

El EQU 12 + 3
E2 EQU E1
E3 EQU E1 - E2

These equations illustrate the brackets as an addition operator. The last
expression isan error. The brackets operator implies addition before its
enclosed expression; it does not imply addition after its enclosed expression.

ALABL [3 * 5] = ALABL + (3 * 5)

ALABL + (3 * 5) [3 * 5] = ALABL + (3 * 5) + (3 * 5)
ALABL [3 * 5] [3 * 5] = ALABL + (3 * 5) + (3 * b5)
ALABL [3 * 5] (3 * 5) ; = error

Chapter 5 Accessing Data

Relational Operators

Syntax
Equal: oper and EQoperand
Not equal: operand NE oper and
Lessthan: operand LT oper and

Lessthan or equal:
operand LE oper and

Greater than:
operand GT oper and

Greater than or equal:
oper and GE oper and

Where:
oper ands are either both constant expressions, or they are both variable or label
names that are defined in the current module and in the same segment.
Discussion
A relational operation always returns aresult of -1 for true and O for false.

Either the result is 32-bits or it is truncated to 8 or 16-bits, depending on the

context.

Example
MOV AL, 3 EQ O ;AL := 00000000B (fal se)
MOV BX, 2 LE 15 . BX := OFFFFH (true)

ASM 386 Assembly L anguage Reference Chapter 5 141

Logical Operators

Syntax
operand OR operand
operand XOR oper and
operand AND oper and
NOT oper and
Where:

operand isaconstant expression.

Discussion

Logical operators operate on individual bits of their operand(s) and return an
absolute number. Each bit of the result depends on the corresponding bit(s) in the
operand(s).

The functions performed by these operators are as follows:

oR A result bit is 1 if corresponding operand bitsare 1. A result bit is
also 1if either corresponding bitis 1. A result bitisO only if both
operand bitsare 0. ORisthelogical inclusive or.

XOR A result bit is 1 if the corresponding operand bits are different. A
result bit is 0 if the operand bits are the same. XORisthelogical
exclusiveor.

AND A result bit is 1 only if both corresponding operand bits are 1.

Otherwise, aresult bit is 0.

NOT A result bit is the opposite of the operand bit. It is1 if the operand bit
is0; Oif the operand bit is 1.

142 Chapter 5 Accessing Data

Examples

1.

This example XORs two absolute numbersinto AX. & isthe assembler
continuation character.

MOV AX, 1111000011110000B
& XOR 0011001100110011B ; AX 1= 1100001111000011B

These equations illustrate the effects of the OR and XOR operators.

11110000B
OR 00110011B
= 11110011B

11110000B
XOR 00110011B
= 11000011B

This equation illustrates the effects of the AND operator.

11110000B
AND 00110011B
= 00110000B

This equation illustrates the effects of the NOT operator.

NOT 00110011B
= 11001100B

ASM 386 Assembly L anguage Reference Chapter 5

143

Attribute Value Operators

THI S, SEG, OFFSET, BI TOFFSET, LENGTH, TYPE, S| ZE, and STACKSTART return
numerical values for the attributes of avariable, label or segment. These operators

do not change the attributes of their operands.

THIS Operator

Syntax
TH' S type
Where:
type can be Bl T, BYTE, WORD, DWORD, PWORD, QWORD, TBYTE, NEAR, or
FAR.
Discussion

The THI S operator defines a variable or label at the current location of assembly.

The variable's or |abel's segment attribute will be the current segment being
assembled. Its offset will be the value of the current location counter. Specifying

the location counter symbol ($) is equivalent to specifying THI S NEAR.
See also: Location counter, Chapter 4

A variable or label typeis specified by the operand of this operator. ltsusageis
similar to that of the LABEL directive. THI Sis used either in conjunction with the

EQU directive (see the following Example) or as part of an operand to an
instruction.

Examples

1. TH S can be used to define another name with an alternate type for the same

dataitem.

AWORD EQU THI S WORD ; defines | abel AWORD
;at current location

BYTEL DB O

BYTE2 DB O

2. Thiscodeis equivalent to the preceding example.

AVORD LABEL WORD
BYTE1 DB 0O
BYTE2 DB 0

3. THI S may be part of an instruction operand.
MOV EAX, THI S DWORD

144 Chapter 5 Accessing Data

SEG Operator

Syntax
SEG varl ab
Where:
varl ab is the name of avariable or |abel.
Discussion

The SEG operator returns the segment selector of the variable or label. The
segment selector is a base relocatable quantity.

SEGis used:

1. To specify (with the ASSUME directive) the segment in which a variable or
label is defined (see Example 1).

2. Tostoreaselector in avariable or to initialize a segment register (see Example
2). Theinitialized segment register cannot be CS.

Examples

1. Thisexampletellsthe assembler that DS will hold the selector of the segment
in which COUNT was defined. In this case, the expression, SEG COUNT, is a
symbolic representation of the name of COUNT's defining segment when COUNT
has been defined in a segment of another module.

ASSUME DS: SEG COUNT

2. Thisexample stores the segment selector for COUNT into SETSTART and
initializes DS with COUNT's segment selector.

SETSTART DW SEG COUNT

; store the selector for the segment
I NI T: MOV AX, SEG COUNT
MOV DS, AX ; initialize DS with COUNT' s segment

3. Thisexampleisequivalent to Example 2.

SETSTART DW SEG COUNT
I NI T: MOV DS, SETSTART

ASM 386 Assembly L anguage Reference Chapter 5 145

OFFSET Operator

Syntax
OFFSET varl ab
Where:
varl ab is the name of avariable or label defined in the current module.
Discussion

The OFFSET operator returns its operand's offset in bytes from the base of the
segment in which the operand is defined. The value returned by OFFSET is a 32- or
16-bit number, depending on whether the segment is a USE32 or USE16 segment.

If the operand to OFFSET is a bit variable that is not within a structure, then it must
be byte-aligned; the OFFSET value is the number of bytes from the beginning of the
segment to the byte with which the bit is aligned. For bits within a structure, the
OFFSET value is the number of bytes from the beginning of the segment to the
nearest low byte boundary.

In most cases, the returned value is not set until bind time; it is arelocatable
number. The OFFSET operator is used primarily to initialize variables or registers
to be used for indirect addressing (see the Example).

Example

146

Some assembler instructions explicitly use indirect addressing when accessing data.
When coding these instructions, you must initialize aregister to the offset value of
the data you wish to access.

TRANSLATE
MOV EBX, OFFSET ASCI | TABLE
MOV AL, VALUE

XLATB ; EBX points to translation table

Chapter 5 Accessing Data

BITOFFSET Operator

Syntax
Bl TOFFSET nane. field
Where:
nane isthe name of a structure.
field isafield of type Bl T within the structure.
Discussion

The Bl TOFFSET operator returns the bit offset from the nearest lower byte address
of astructure field of type Bl T. Use the following expression to obtain avalue
equal to the number of bits from the beginning of the structure to a specific bit:

(((OFFSET nane.field) - (OFFSET nane))*8)
+ BI TOFFSET nane. field

For aBI T-type variable defined outside of a structure, Bl TOFFSET always returns a
0, because such a bit will always be byte-aligned. BI TOFFSET also returns a 0 for
structure fields that are not of type BI T.

ASM 386 Assembly L anguage Reference Chapter 5 147

Example

Although the OFFSET operator is not arequired part of a Bl TOFFSET expression,
BI TOFFSET isintended for use with OFFSET.

TESTBI T STRUC

TSTBI TO DBI T OB ; structure tenplates
TSTBI T1 DBI T 0B ; can be defined
TSTBI T2 DBI T 0B ; outside a segnent

TSTBI T3 DBIT 0B
TSTBI T4 DBI T 0B
TSTBI T5 DBI T 0B
TSTBI T6 DBI T 0B
TSTBI T7 DBIT 0B
TSTBI T8 DBI T 0B
TSTBIT9 DBIT 0B
TESTBI T ENDS

These instruction statements contrast OFFSET and BI TOFFSET assignments to AX.

DATA SEGVENT USE32

Bl TTSTVARS TESTBI T <> ; assune offset 1001H

; fromdata segnent
DATA ENDS
CODE SEGMENT EO ; default USE32
MOV AX, BI TOFFSET BI TTSTVARS. TSTBI T9 ; AX =1
MOV AX, OFFSET BI TTSTVARS. TSTBI T9 ; AX 1= 1002H

MOV AX, (((OFFSET BI TTSTVARS. TSTBI T9)
& - (OFFSET BITTSTVARS)) * 8)
& + BI TOFFSET BI TTSTVARS. TSTBI T9 ; AX =9
; expression yields nunber of bits
; from beginning of structure for TSTBIT9

148 Chapter 5 Accessing Data

LENGTH Operator

Syntax
LENGTH var nane
Where:

varnanme isthe name of avariable or structure field (without the dot operator).

Discussion

LENGTH returns the number of storage units (Bl Ts, BYTES, WORDs, DWORDS,
QWORDs, or TBYTES) that have been allocated for its operand. For aBI T-type
operand, LENGTH returns a value equal to the number of bitsin the storage
allocation. Use LENGTH to set a counter for aloop that accesses the elements
of an array .

Examples

These equations illustrate results for LENGTH.

ABYTEARRAY DB 1, 2,3,4,5,6,7
LENGTH ABYTEARRAY = 7

AWORDARRAY DW 150 DUP (0)
LENGTH AWORDARRAY = 150

TYPE Operator

Syntax
TYPE varl ab
Where:
varl ab isthe name of avariable, a structure field (without the dot operator),
or alabel.
Discussion

The TYPE operator returns a value that represents the number of bytes occupied by
the type of its operand. These values arelisted in Table 5-3.

Note that TYPE applied to alabel operand yields a negative value.

Use TYPE in instruction sequences where a pointer is to be incremented by the
number of bytes occupied by the TYPE operand. Or, use TYPE for scaling
operations.

ASM 386 Assembly L anguage Reference Chapter 5 149

Table5-3. TYPE Operator Results

Operand Type

Value Returned

BIT
BYTE
WORD
DWORD
PWORD
QWORD
TBYTE
Structure
Record
NEAR
FAR

*

o oo A~ DN B

10

number of bytes in structure
number of bytes (1 to 4) in record
-1

-2

* For a BIT-type variable, TYPE returns a value equal to the number of bytes allocated with DBIT.
For BIT-type structure fields, TYPE returns O if the field has less than 8-bits; otherwise, TYPE

returns 1. See also: Chapter 4

Examples

1. Thisexampleincrements ESI using the TYPE operator and loops to the next
ARRAY element to be accumul ated.

MOV EBX, OFFSET ARRAY
MOV ECX, LENGTH ARRAY

LENGTH = nunber of el enments

MOV ESI, O ; index into array
ALAB: ADD AX, [EBX] + [ESI] ; add el ement to AX val ue
ADD ESI, TYPE ARRAY ; increnent pointer by size
; of an array el enent
LOOP ALAB

2. Thisexampleisfunctionally equivalent to Example 1.

MOV EBX, OFFSET ARRAY
MOV ECX, LENGTH ARRAY

MOV ESI, O ;

ALAB: ADD AX, [EBX] [ESI

I NC ESI
LOOP ALAB

150 Chapter 5

LENGTH = nunber of el enents
index into array

* TYPE ARRAY]

add el enent to AX val ue

Accessing Data

SIZE Operator

Syntax

S| ZE var nane

Where:

varnanme isthe name of avariable or structure field (without dot operator).

Discussion

The SI ZE operator returns the number of bytes allocated for avariable. For a
variable allocated with DBI T that does not end on a byte boundary, the result is
rounded up by 1 byte. For BI T-type structure fields with less than 8-bits, SI ZE
returns 1, otherwise, SI ZE returns the same value as LENGTH.

For non-BI T-type variables, S| ZE returns avalue that is related to the LENGTH and
TYPE results according to the following identity:

SI ZE = LENGTH * TYPE

Examples

1.

These equationsillustrate results for SI ZE.

ABYTEARRAY DB 1, 2,3,4,5,6,7
SI ZE ABYTE ARRAY = 7

AWORDARRAY DW 150 DUP (0)
SI ZE AWORDARRAY = 300

ADWORDARRAY DD 1, 2, 3,4,5,6,7
SI ZE ADWORDARRAY = 28

This example initializes the variable ASI ZE to 7 and assigns the value 300 to
AX.

ABYTEARRAY DB 1, 2,3,4,5,6,7
AWORDARRAY DW 150 DUP (0)
AS| ZE DB S| ZE ABYTEARRAY ; ASI ZE gets 7

MOV AX, SIZE AWORDARRAY ; AX 1= 300

ASM 386 Assembly L anguage Reference Chapter 5 151

STACKSTART Operator

Syntax
STACKSTART segnane
Where:
segnane isthe name of the stack segment (defined with STACKSEG).

Discussion

Use STACKSTART to initialize the stack pointer (E)SP. Because the processor stack

grows downward, the initial stack pointer value equals the offset of the first dword

(or word, depending on the stack use attribute) above the stack segment in memory.
Example

STACK STACKSEG 100

MOV ESP, STACKSTART STACK

Attribute Override Operators

Use the attribute override operators to respecify attributes, such as a variable's or
label's segment or type. There are three kinds of attribute override operators:

* Segment overrides, used to override a default segment register or to specify an
anonymous reference to a variable or label

» ThePTR operator, used to override type

» The SHORT operator, used to override the type of aforward-referenced NEAR
label

152 Chapter 5 Accessing Data

Segment Override Operator

Syntax

CS: varl ab
DS: varl ab
ES: varl ab
FS: varl ab
GS: varl ab
SS: varl ab

Where:

varl ab isavariable name, alabel that is not of type NEAR or FAR, or an
address expression.

Discussion

This operation overrides the segment attribute of avariable or label. The explicit
use of a segment override takes precedence over an ASSUME directive and over
default segment register usage.

Use the segment override to specify a segment register as the segment part of a
memory address. A segment override applies only to asingle instruction. The
ASSUME directive tells the assembler to generate necessary segment overrides for
all subsequent instructions.

Seealso: ASSUME directive, Chapter 2

Use this operator to override the default segment register for operands that are (or
contain) only base or index registers. Such operands (and expressions) are assumed
to point to avariable. Thisusage is called an anonymous (or non-symbolic)
reference.

Segment overrides cannot be specified for the default registersin the following
Cases:

o ESasthe destination of astring operation
e SSfor stack operations
* CSfor instruction fetches

Seealso: Appendix A for asummary of the processor default segment selection
rules

ASM 386 Assembly L anguage Reference Chapter 5 153

Examples
1. Thisexample compares the use of ASSUME and the segment override.

DATA SEGVENT
ABYTE DB 0O
DATA ENDS

CODE SEGVENT
ASSUME DS: DATA
MOV BL, ABYTE

; reference to ABYTE is covered by the ASSUME
MOV BL, ES: ABYTE ; override default (DS)

; ASSUME not required for ABYTE reference
CODE ENDS

2. These examples make anonymous references. When the first MOV instruction
executes, the DS (default) register isused. The second MOV instruction
specifies that EBX points to data accessible through the ES register.

MOV BL, [EBX]

MOV BL, ES:[EBX]

The opcode for the second MOV will be preceded by a segment override prefix
(byte) that forces the processor to use the ES register in order to calculate the
physical address of the variable.

Seealso: Segment override opcode prefixes, Chapter 6

154 Chapter 5 Accessing Data

PTR Operator

Syntax
type PTR exp
Where:
type can be BI T, BYTE, WORD, DWORD, PWORD, QAORD, TBYTE, NEAR or
FAR.
exp can be avariable name, alabel name, an address or register
expression, or an integer that represents an offset.
Discussion

Use PTRto override the type assigned to a variable or label name, or to assign a
type to an anonymous effective address expression such as[EBX] (seethe
Examples).

PTRassigns the t ype attribute specified on the | eft to the variable, 1abel or number
specified on theright. PTR also assigns segment and offset attributes to the
variable or label specified on the right.

When exp is a constant expression, type must be preceded by a segment override.
When the t ype is NEAR or FAR, a segment override may not be specified.

Table 5-4 summarizes segment and offset attribute assignments for the possible

values of exp.
Table5-4. PTR Result Attributes
expis Segment Offset
variable or label exp's exp's
number specified by segment override exp itself
anonymous reference default segment unless overridden run-time value

ASM 386 Assembly L anguage Reference Chapter 5 155

Examples
1. These examplesincrement a byte, word, and dword in memory.

INC BYTE PTR [BX]
INC WORD PTR [ESI]
| NC DWORD PTR [EBX]

2. These examples move an immediate value to a byte, word, or dword in
memory.

MOV BYTE PTR [EDI], 99
MOV WORD PTR [EDI], 99
MOV DWORD PTR [EDI], 99

3. Thisexample jumps through two levels of indirection.

JMP PWORD PTR [EBX] ; EBX points to 4-byte offset
; followed by 2-byte segnent base

4. These examples pick up aword from a byte array and a byte from aword
array.
FOOW DW 100 DUP (?)
FOOB DB 200 DUP (?)

ADD AL, BYTE PTR FOOW 101]

; add |l ow byte of 50th word to AL
ADD DX, WORD PTR FOOB[20]

; add word at 21st byte to DX

5. This example accesses an anonymous variable at a given offset from a
segment.

MOV AL, DS: BYTE PTR 5 ; nmove byte 5 of DS segnment to AL
6. These examples override the type attributes of aword variable and alabel.

MOV CL, BYTE PTR AWORD ; get 1st byte of variable
MOV DL, BYTE PTR AWORD + 1 ; get variable's 2nd byte
MOV AL, BYTE PTR APRCC + 5 ; read a byte of program code

156 Chapter 5 Accessing Data

SHORT Operator

Syntax
SHORT [abel exp
Where:
I abel exp isalabel or label expression defined within the same segment as the
instruction being assembl ed.
Discussion

The SHORT operator specifiesthat alabel referenced by aJMP or conditional jump
instruction is within the range of -128..127 bytes of the end of the instruction.
SHORT allows the assembler to check that the label isin this range and to generate
the most compact code for complex label expressions.

When asingle label isforward-referenced, the assembler optimizes the relative
offset. However, complex forward references cannot always be optimized.

Example
This example illustrates the use of SHORT to save bytes of code. It assumes a
USE32 segment.
JVP $+(FWDLAB - FWDLAB2) ; 8 bytes
JVP SHORT $+(FWDLAB - FWDLAB2) ; 3 bytes
FWDLAB:
FWDLAB2:

ASM 386 Assembly L anguage Reference Chapter 5 157

Record Specific Operators

The W DTH operator returns aresult equal to the number of bitsin arecord or
record field.

The MASK operator, together with arecord field name used as a shift count, helpsto
isolate and access the fields within arecord. This provides an alternative to
defining Bl T-type variables in order to isolate specific bitsin arecord.

WIDTH Operator

Syntax
W DTH record
or
W DTH rec-field
Where:
record isthe name of arecord variable.

rec-fiel disthename of arecord field.

Discussion
The W DTH operator returns a value equal to the number of bitsin either arecord or
arecord field.

Example

REC1 RECORD F1:2, F2:4, F3:1
RINUMBI TS DB W DTH REC1
F2NUMBI TS DB W DTH F2

; byte initialized to 7
; byte initialized to 4

158 Chapter 5 Accessing Data

MASK Operator

Syntax
MASK rec-field
Where:

rec-fiel disthe name of arecord field.

Discussion

The MASK operator defines a value that masks a selected field in arecord. This
value has 1sin the bit positions specified by rec- fi el d and Os for every other bit
position in the record.

Examples

1. Thissequence of instructions creates arecord in EAX of the same type as REC's.
The EAX FULL field is acopy of the REC. FULL field. All other EAX fields
have zeros.

MOV EAX, REC
AND EAX, MASK FULL

2. Thissequence of instructions creates arecord in EAX of the same type as REC's.
The FULL field is zeroed. All other EAX fields are copies of the corresponding
RECfields.

MOV EAX, REC
AND EAX, NOT MASK FULL

ASM 386 Assembly L anguage Reference Chapter 5 159

Using Field Names as Shift Counts

Syntax
rec-field

Where:

rec-fiel disthename of arecord field.

Discussion

The record field name specifies the number of bits the record will be shifted. To
evaluate afield, the record is shifted right to move the field's contents to the low-
order bits of aBYTE, WORD, or DWORD (see the Example).

Example

This example defines arecord. It then isolates and evaluates field Cin the record.

PATTERN RECORD A: 3, B:1l, C2, D4, E6

AREC PATTERN <>

MOV DX, AREC
AND DX, MASK C

SHR DX, C

160 Chapter 5

nove record into DX

mask out fields A B,D,E with
0000110000000000B

DX now equal to value of field C

Accessing Data

Instruction Operands

For an assembler instruction to operate on data, the data must be expressed in a
form that allows it to be accessed. Some instructions implicitly operate on certain
registers. In most cases, data must be specified as an explicit operand. An
instruction operand can be expressed as a register, a constant expression, an
external constant, alocation in memory, or as an expression that combines these
components using assembl er operators.

Register Operands

The following registers can be used as explicit operands for many processor
instructions:

e 32-bit general registers: EAX, EBX, ECX, EDX, EBP, ESP, ESI, EDI
» 16-bit general registers: AX, BX, CX, DX, SP, BP, SI, DI

» 8-bit generd registers: AL, AH, BL, BH, CL, CH, DL, DH

* Segment registers: CS, DS, ES, FS, GS, SS

e Control registers. CR0O, CR2, and CR3

» Testregisters: TR3, TR4, TR5, TR6, and TR7

» Debugregisters: DRO, DR1, DR2, DR3, DR6, and DR7

The segment registers can be used only in MOV, PUSH, and POP instructions. All
general registers can be used in processor arithmetic and logical operations.

Seealso: Processor registers, Appendix A
processor instructions, Chapter 6

The following examples show instructions that use processor registers as operands:

MOV AX, FS ;. contents of FS noved to AX
ADD ESI, EBX ;o BSI := ESI + EBX
MOV AX, BX ;. contents of BX noved to AX

The floating-point coprocessor has its own set of registers called the floating-point
stack. The floating-point stack consists of eight elements, each of which can be
referenced as follows:

ST(i)
Where:

i isadigit from O through 7.

The top-of-stack element is always ST(0), which can be abbreviated as ST.

Seealso: Floating-point stack and assembler floating-point instructions,
Chapter 7

ASM 386 Assembly L anguage Reference Chapter 5 161

Immediate Operands

Animmediate operand is an integer or ordinal constant value. Animmediate
operand is never the destination operand of an assembler instruction. Immediates
are source operands .

Seealso: Destination and source operands, Chapter 6
In the following example, 5 is an immediate operand:

MOV AL, 5 ; AL :=5
CWP AX, OFFFFH ; conpare contents of AX to OFFFFH

Animmediate may also be a constant expression, such as 15 OR 5 in the following
example:

CW AL, 15 OR 5 ; 15 OR 5 is a constant expression

OFFSET VARIs an expression that yields an integer, so OFFSET VAR + 1000 is an
immediate operand in the following example:

MOV EAX, OFFSET VAR + 1000 ; EAX := sum of value of the
OFFSET of VAR and 1000

A segment name represents alogical base address (an ordinal value) so DATASEGis
an immediate operand in the following example:

MOV AX, DATASEG
MOV DS, AX ; initializes DS to access DATASEG

Memory Operands

A memory operand refers to a particular location in memory. The general term for
amemory operand is an address expression. An address expression may be a
simple variable or label name, or it may involve registers, structure fields, and/or
constants. Each address expression uses one of the addressing methods described
in the next section.

162 Chapter 5 Accessing Data

Memory Addressing Methods

Logical addresses specified in an assembler program must be mapped to processor
memory addresses so the program can be executed. The system utilities perform
this mapping after the program is assembled. The system utilities translate a
program'slogical addresses into processor effective addresses. An effective
addressis an offset from a segment base address.

Seealso: Processor memory organization and effective addresses, Appendix A

Assembler segment structure and memory addressing methods reflect the processor
memory addressing forms. The processor has two forms of addressing:

» Direct Addressing
The effective address (or offset from the segment base) can be:

— A register
— Thevalue of a specified variable or |abel
— A constant or the value of a constant expression.

e Indirect Addressing
The effective address (offset) is calculated from the contents of a specified
base or index register (or a combination of both, with an optional
displacement) pointing to amemory location. There are four forms of indirect
addressing:

— Register indirect addressing

— Based addressing

— Based indexed addressing

— Indexed addressing, which may be scaled (32-bit addressing only)

Direct address offsets can be BYTES, WORDs, DWORDs or PWORDs. In the special case
when individual bitsin a string are accessed, the offset indicates the specific bit in
astring that isto be affected by the processor bit test instructions.

See also: Bit addressing, in this chapter.

The following sections explain ASM 386 direct and indirect addressing formsin
more detail.

ASM 386 Assembly L anguage Reference Chapter 5 163

Direct Memory Addressing

For direct memory addressing, the instruction operand is specified by a variable or
label name. The variable or label refersto aparticular location in memory. The
contents of the memory location are used as the operand. For example:

MOV EAX, COUNT ; the dword value at nmenory | ocation
: COUNT is noved i nto EAX

Indirect Memory Addressing

Figure 5-1 shows how an indirect address offset is calculated for each register
addressing form explained after the figure.

32-bit Addressing

Segment t Base + (Index * Scale) + Displacement
) EAX | EAX | L A
CS ECX ECX
55 DX EDX 2 No Displacement
EBX EBX
gg Y esp (T O * 9 + < 8-bit Displacement
FS EBP EBP 4 16-bit Displacement
GS ESI ESI 8
EDI EDI

16-bit Addressing

Segment + Base T Index + Displacement ~
cs) N N
SS .
DS \ . BX + s + Nq D|§placement
8-bit Displacement
ES BP DI T
16-bit Displacement
FS
GS

164 Chapter 5

W-3421

Figure5-1. Effective Address Calculation

Accessing Data

The segment override operator may be used in some cases to override the processor
defaults for segment registers listed in the first column of Figure 5-1, except that
segment overrides cannot be specified for the default registersin the following
Cases:

» ESasthedestination of astring operation
e SSfor stack operations
* CSfor instruction fetches

Seealso: Appendix A for asummary of the processor default segment
selection rules

A register expression uses a base and/or an index register listed in the second and
third columns of Figure 5-1. The assembler register addressing forms are:

[base-reg] or [index-reg * scal €]

[base-reg + index-reg * scal €]

[base-reg + disp] or [index-reg * scal e + disp]
[base-reg + index-reg * scal e + disp]

Where:

base-reg isany 32-bit general register (EAX, ECX, EDX, EBX, ESP, EBP,
ESI, EDI) for 32-bit addressing, and isBX or BP for 16-bit
addressing.

i ndex-reg isany 32-bit general register except ESP for 32-bit addressing, and is
Sl or DI for 16-bit addressing.

scal e is (an optional) constant or constant expression that evaluates to 1-, 2-,
4-, or 8- for 32-bit addressing. Itisinvalid for 16-bit addressing.

di sp isan 8- or 32-bit displacement for 32-bit addressing, and isan 8- or
16-bit displacement for 16-bit addressing.

Indirect memory addresses can be formed from different combinations of a base
address, an index that may be scaled for 32-bit addressing, and a displacement from
the base. Each possible combination is one of the indirect memory addressing
forms shown in Figure 5-1.

For all forms, the notation of a set of brackets ([]) enclosing aregister name
indicates that the register contents point to a memory location that will supply the
value to be used as an operand.

The following sections discuss the four forms of indirect addressing and bit
addressing.

ASM 386 Assembly L anguage Reference Chapter 5 165

Register Indirect Addressing

For register indirect addressing, the offset of the memory location is contained in a
base or index register. To address the location:

1. Load the offset into the register, and
2. Usetheregister name in brackets as the instruction operand.

To indirectly address avariable in aUSE16 segment, code something like the
following example:

MOV BX, OFFSET AVAR ; noves offset of AVAR into BX
MOV AX, [BX] : AX now contai ns contents of AVAR

Based Addressing

166

The based address form is similar to register indirect form except that a
displacement is added to the contents of the register. The displacement can be an
8- or 32-bit number for 32-bit addressing and an 8- or 16-bit number for 16-bit
addressing.

In the based address form, the base register contains the offset of alocation in
memory, called the base. The displacement is used to access another location
relative to that base. For example,

MOV EBX, OFFSET DATASTRUC ;. EBX: = base of DATASTRUC
MOV EBX, [EBX + 4] : EBX: = dword | ocated at fourth
; byte from DATASTRUC

For 32-bit addressing instructions, any 32-bit general register can be used as the
base register. For 16-bit addressing instructions, the BX or BP register can be used
as the base register.

Chapter 5 Accessing Data

Based Indexed Addressing

Based indexed addressing uses the contents of a base register, the contents of an
index register, and an optional displacement. In this addressing form, the base
register points to the base of a data structure and the index register is an index into
that structure. For example:

XOR EAX, EAX ;. clear EAX
MOV EBX, OFFSET ARRAYSTRUC

; load array's base address
MOV ECX, LENGTH ARRAYSTRUC

MOV ESI, O : set index to O
ALAB: ADD EAX, [EBX + ESI] ; get el ement

ADD ESI, 4 ;increnent index

LOOP ALAB ; repeat sequence

For 32-bit addressing, any 32-bit general register can be used as a base register, and
any 32-bit general register except ESP can be used as an index register. A scaling
factor may multiply the contents of the index register, as explained in the next
section.

If no scaling factor is used, the first register specified is assumed to be the base
register, and the second register is assumed to be the index register.

For 16-bit addressing, only registers BX and BP can be used as base registers and
only Sl and DI can be used as index registers; the base and index address may be
specified in any order.

Indexed Addressing

Indexed addressing uses an index register and a displacement. In this case, the
contents of the register specify a byte displacement from the offset of the base. For

example:
MOV SI, O ; set indices
MOV DI, O ;Sl, D :=0

MOV CX, LENGTH SOURCE; npves count of SOURCE
; data units into CX

ALAB: MOV AX, SOURCE [SI] ; indexed address
MOV DEST [DI], AX : indexed address
ADD SI, 2 ; point to next word i n SOURCE
ADD DI, 2 ; point to next word in DEST
LOOP ALAB ; junp back to ALAB

ASM 386 Assembly L anguage Reference Chapter 5 167

For 32-bit addressing, any 32-bit general register except ESP can be used as an
index register. The assembler makes certain assumptions about registers for
instructions using 32-bit addressing:

» If thereisonly one 32-bit register used in an indirect address, it is assumed to
be a base register unless it has a scale factor.

» If the 32-bit register is scaled, it is assumed to be an index register evenif itis
the only 32-bit register in the indirect address.

» If there are two 32-bit registersin an indirect address, the first one (specified
on the | eft) is assumed to be the base and the second is assumed to be the index
register, unless one register is scaled.

For 16-bit addressing instructions, only registers Sl and DI can be used as index
registers.
Scaling

The scaling factor is used to multiply the value pointed to by the 32-bit index
register by 1, 2, 4, or 8. The syntax for specifying a scaled index register is:

[register * factor]
Where:
regi ster iSEAX, EBX, ECX, EDX, EBP, EDI, or ESI.
factor is aconstant expression that evaluatesto 1, 2, 4, or 8.
For example:
MOV EAX, [EDX*4]
uses a scaled indexed address, with the index (EDX) scaled by afactor of 4.

168 Chapter 5 Accessing Data

Default Segment Registers and Anonymous References

Anonymous references such as:

[BX]

[EBP]

WORD PTR [DI]

[EBX] . FI ELDNAMVE
and BYTE PTR [BP]

do not specify a variable name from which a segment can be determined. Note that
the structure field name in [EBX] . FI ELDNANME has type and offset attributes, but it
has no segment attribute.

Unless you explicitly code a segment override operator before an instruction,
segment registers for anonymous references are determined by the processor
default segment register selection rules.

DSisthe default segment register for all memory references except when BP, EBP,
or ESPis used as the base register. When this occurs, SSis the default segment
register.

However, you cannot override ES as the destination segment register for string
operations. The processor string instructions always use ES as a segment register
for operands pointed to by (E)DI, and DS for operands pointed to by (E)SI. Only
DS can be overridden with the segment override operator in string operations.

Take care that the correct segment is addressed when an anonymous offset is
specified. Unless you code a segment override, the processor default segment will
be addressed, and the anonymous offset applied to the default segment.

For example, if a program's variables all reside in segment SEGL, as specified by

SEGL SEGVENT RW
VAR DW 500 DUP(0) ; 500 words filled with 0's
SEGL ENDS

and if the ASSUVE directive in the code segment is as follows:

ASSUME DS: SEGL
then all references to named variables in segment SEGL assemble correctly.
If BPis selected as a base register to access elements of VAR, as follows:

MOV BP, OFFSET VAR
MOV AX, [BP]

the SS segment register is accessed at run time instead of DS (no assembly-time
€rror occurs).

To override this default segment register choice, a segment prefix must be used, as
follows:

MOV BP, OFFSET VAR
MOV AX, DS:[BP] ; segment override operator
; indicates DS register

ASM 386 Assembly L anguage Reference Chapter 5 169

Bit Addressing

The BT (bit test), BTS (bit test and set), BTR (bit test and reset), and BTC (bit test
and complement) instructions operate on bit strings. These processor instructions
make it possible to manipulate individual bits.

A bit string may be stored in ageneral register or in memory. The following isthe
general syntax for addressing a bit within a bit string:

base, offset

Where:

base can be specified using any of the previously mentioned addressing
modes described in Memory Addressing Methods.

of fset must be in the range 0 to 31 for a general register; it can range from -2

to +2 gigabits for amemory address.

The offset specified for ageneral register addresses a bit within the register. The
number specified for offset istaken MOD the size of the base (register). (Seethe
following examples).

All of the bit manipulation instructions load the carry flag with the value of the
selected bit. BTS then sets the bit to 1, BTR resets the bit to 0, and BTC
complements the bit.

BT EAX, 12 ; test bit 12 in register EAX

BTC MEM 1111B ; conplenent bit 15 in word-1length
; menory | ocation MEM

BTR AX, 17 cset bit 1in AXto O

BTS BYTEl, 6 ; set bit 6 in byte menory

: location BYTELl to 1
See also: BT, BTS, BTR, and BTC instructions, Chapter 6.

170 Chapter 5 Accessing Data

Processor Instructions

This chapter has three major sections:
* Anoverview of the processor instruction set

» Adiscussion of instruction statements: their syntax, attributes, and encoding
format

* Anexplanation of the notational conventions used in this chapter, followed by
adetailed reference for each processor instruction.

See also: Floating-point coprocessor instructions, Chapter 7

Overview of the Processor Instruction Set

This section groups the processor instructions according to their general functions.
It has three major subsections:

» DataTransfer Instructions

» Control Instructions

* Systems Programming Instructions

Some processor instructions are listed more than once in these sections.

See also: 80386 Programmer's Reference Manual for more information about
the following topics:

* Processor application programming
* Processor system programming:
— System architecture
— Memory management, protection, multitasking, and input/output
— Exceptions, interrupts, and debugging
— Processor initialization, coprocessing, and mulitprocessing

— Processor operating modes, mixing 16-bit and 32-bit code, and porting 286
or 8086 code to the processor

ASM 386 Assembly L anguage Reference Chapter 6 171

Data Transfer Instructions

This section classifies the processor instructions according to the following criteria:

Doesthe instruction assign values? See Tables 6-1 to 6-4.
Doesthe instruction adjust data values? See Tables 6-5 and 6-6.
Does the instruction make stack transfers? See Table 6-7.

Does theinstruction yield flag values that can be tested by conditional
instructions? See Table 6-8.

Does the instruction test specific flag values to determine its execution or
results? See Table 6-9.

Instructions for application programming are listed first in these tables; those for
system-only programming, if any, arelisted last. Some processor instructions
satisfy more than one criterion. These instructions are listed more than once in the
following subsections.

Instructions That Assign Data Values

172

Most processor instructions assign avalue to alocation. Tables6-1 to 6-4
summarize the processor instructions that assign data values:

Table6-1 lists processor instructions that make external input/output

assignments.

Table6-2 lists processor instructions that make internal 1oad and store

assignments.

Table6-3 lists processor instructions that make uncal culated value assignments.

Table6-4 lists processor instructions that make calculated value assignments.

Table6-1. External 1/0O Instructions

Processor Instruction Instruction Description
IN Input from port

ouT Output to port

INS Input string from port
OouUTSs Output string to port

Chapter 6 Processor Instructions

Table 6-2. Internal Load and Store Instructions

Processor Instruction

Instruction Description

LODS
STOS
LAHF
SAHF
LEA
LDS
LES
LFS
LGS
LSS
LSL
LAR
LGDT
LGDTW
LGDTD
SGDT
SGDTW
SGDTD
LIDT
LIDTW
LIDTD

Load string operand

Store string operand

Load flags into AH register

Store AH into flags

Load effective address offset
Load full pointer into DS:register
Load full pointer into ES:register
Load full pointer into FS:register
Load full pointer into GS:register
Load full pointer into SS:register
Load segment limit

Load access rights (AR) byte
Load global descriptor table (GDT) register
Load GDTR using 16-bit operand
Load GDTR using 32-bit operand
Store GDT register

Store GDTR using 16-bit operand
Store GDTR using 32-bit operand
Load interrupt descriptor table (IDT) register
Load IDTR using 16-bit operand
Load IDTR using 32-bit operand

ASM 386 Assembly L anguage Reference

continued

Chapter 6 173

Table 6-2. Internal Load and Store Instructions (continued)

Processor Instruction Instruction Description

SIDT Store IDT register

SIDTW Store IDTR using 16-bit operand

SIDTD Store IDTR using 32-bit operand

LLDT Load local descriptor table (LDT) register
SLDT Store LDT register

LTR Load task register

STR Store task register

LMSW Load machine status word (MSW)
SMSW Store MSW

Table 6-3. Instructions That Make Uncalculated Value Assignments

Processor Instruction Instruction Description

MOV Move data

MOVSX Move sign-extended data

MOVZX Move zero-extended data

STC Set carry flag (CF)

CLC Clear carry flag

MOVS Move string to string

STD Set direction flag

CLD Clear direction flag

XCHG Exchange register/memory with register
MOV Move to/from control, debug, or test registers
STI Set interrupt flag

CLI Clear interrupt flag

CLTS Clear TS (task switch) flag in CRO

174 Chapter 6 Processor Instructions

Table 6-4. Instructions That Make Calculated Value Assignments

Processor Instruction Instruction Description

ADD Add

ADC Add with carry

XADD Exchange and add (not available on Intel386 or 376
processors)

SUB Subtract

SBB Subtract with borrow

MUL Unsigned multiplication

IMUL Signed multiplication

DIV Unsigned divide

IDIV Signed divide

INC Increment by 1

DEC Decrement by 1

NEG Two's complement negation

NOT One's complement negation (logical NOT)

AND Logical AND

OR Logical inclusive OR

XOR Logical exclusive XOR

TEST Logical compare

CMP Compare two operands

CMPXCHG Compare and exchange (not available on Intel386 or
376 processors)

CMPS Compare two strings

SCAS Compare string data

CMC Complement carry flag (CF)

BT Bit test

BTS Bit test and set

BTR Bit test and reset

BTC Bit test and complement

BSF Bit scan forward (LSB to MSB)

BSR Bit scan reverse (MSB to LSB)

NOP No operation (advances (E)IP)

SETcc Set byte on condition

LOOPcond Loop control with (E)CX counter (decrements (E)CX)

Jcc Conditional jumps (add displacement to (E)IP)

LEA Load effective address

VERR Verify segment for reading

VERW Verify segment for writing

ASM 386 Assembly L anguage Reference Chapter 6 175

Instructions That Adjust Data

Theinstructionsin Tables 6-5 and 6-6 adjust data values, either by converting data
from one type or format to another or by shifting or rotating data values.

Table 6-5. Data Conversion I nstructions

Processor Instruction Instruction Description

MOVSX Move sign-extended data

MOVZX Move zero-extended data

cBwW Convert byte to word

CWD Convert word to dword

CWDE Convert sign-extended word to dword
CDQ Convert sign-extended dword to qword
AAA ASCII adjust AL after addition

AAS ASCII adjust AL after subtraction
DAA Decimal adjust AL after addition

DAS Decimal adjust AL after subtraction
AAM ASCII adjust AX after multiplication
AAD ASCII adjust AX before division
ARPL Adjust RPL field of selector

Table 6-6. Shift and Rotate I nstructions

Processor Instruction Instruction Description

SHL Shift logical left

SHR Shift logical right

SAL Shift arithmetic left

SAR Shift arithmetic right

SHLD Shift double precision arithmetic left
SHRD Shift double precision arithmetic right
ROL Rotate left

ROR Rotate right

RCL Rotate through carry flag left

RCR Rotate through carry flag right
BSWAP Byte swap (not available on Intel386 or 376 processors)

176 Chapter 6 Processor Instructions

Instructions That Make Stack Transfers

These instructions transfer data values to or from the stack. They also decrement
or increment the 32- or 16-bit stack pointer (E) SP. Table 6-7 lists processor
instructions that make stack transfers.

See also:

Floating-point stack, Chapter 7

Table6-7. Stack Transfer Instructions

Processor Instruction

Instruction Description

PUSH
POP
PUSHF
PUSHFD
POPF
POPFD
PUSHA
PUSHAD
POPA
POPAD
ENTER
LEAVE

Push operand onto stack

Pop dword or word from stack

Push FLAGS register (16-bits) onto stack

Push EFLAGS (32-bits) register onto stack

Pop stack into FLAGS

Pop stack into EFLAGS

Push all general word registers onto stack

Push all general dword registers onto stack

Pop stack into word registers (discard SP value)
Pop stack into dword registers (discard ESP value)
Make stack frame for procedure parameters
High level procedure exit

ASM 386 Assembly L anguage Reference Chapter 6

177

Instructions That Yield Definitive Flag Values

Processor instructions that assign an either/or flag value also create a value that can
be tested for conditional loops, jumps, or other assignments. For the processor
comparison and bit test instructions, flag value assignments are the primary
execution results. For other processor instructions, either/or flag value assignments
are secondary execution results. Table 6-8 lists processor instructions that make
either/or assignments to the zero (2), sign (S), carry (C), auxiliary carry (A),
overflow (0O), and/or parity (P) flag(s).

See also:

Processor flags, Appendix A

Table 6-8. Processor Instructions That Yield Definitive Flag Values

Instruction Assigns Either/Or Instruction Description
Value to Flags

CMP z S Cc A o P Compare two operands (non-
destructive SUB)

CMPS z S C A o P Compare two strings

CMPXCHG Z S A o P Compare and exchange (not available
on Intel386 or 376 processors)

SCAS z S C A O P Compare string data

BT C Bit test

BTS C Bit test and set

BTR C Bit test and reset

BTC C Bit test and complement

BSF z Bit scan forward (LSB to MSB)

BSR z Bit scan reverse (MSB to LSB)

ADD Z S C A 0] P Add

ADC z S C A O P Add with carry

XADD z S C A o P Exchange and add (not available on
Intel386 or 376 processors)

SUB z S C A O P Subtract

SBB z S C A O P Subtract with borrow

MUL C (0] Multiply

IMUL C (0] Signed multiplication

INC z S A O P Increment by 1

DEC z S A o P Decrement by 1

NEG z S C O P Two's complement negation

continued
178 Chapter 6 Processor Instructions

Table 6-8. Processor Instructions That Yield Definitive Flag Values (continued)

Assigns Either/Or Instruction
Instruction Value to Flags Description
AND z S P Logical AND
OR z S P Logical (inclusive) OR
XOR z S P Logical (exclusive) XOR
TEST z S P Logical compare (non-destructive AND)
AAA cC A ASCII adjust AL after addition
AAS cC A ASCII adjust AL after subtraction
AAM z S P ASCII adjust AX after multiplication
AAD 4 S P ASCII adjust AX before division
DAA z S cC A P Decimal adjust AL after addition
DAS z S cC A P Decimal adjust AL after subtraction
ROL C Rotate left
ROR C Rotate right
RCL C Rotate through carry flag left
RCR C Rotate through carry flag right
SHL 4 S C P Shift logical left
SAL z S C P Shift arithmetic left
SAR 4 S C P Shift arithmetic right
SHR z S C P Shift logical right
SHLD z S C (0] P Shift double precision arithmetic left
SHRD z S C 0] P Shift double precision arithmetic right
ARPL 4 Adjust RPL field of selector
LAR 4 Load AR (access rights) byte
LSL z Load segment limit
VERR z Verify segment for reading
VERW z Verify segment for writing

Conditional Instructions That Test Flag Values

Three processor instructions depend on flag values for their execution results. The
conditional loops and jumps are primarily control transfer instructions; SETcc is
not.

ASM 386 Assembly L anguage Reference Chapter 6 179

Table 6-9 lists these instructions and indicates whether each tests the zero (2), sign
(S), carry (C), auxiliary carry (A), overflow (O), and/or parity (P) flag(s).

Table 6-9. Conditional Instructions That Test Flag Values

Instruction Tests Flag Values Description

LOOPcond z Loop control with (E)CX counter
SETcc z S C 0] P Set byte on condition

Jcc z S C (0] P Jump if condition is met

Control Instructions

Control instructions either transfer control between code sections or exert control
over the processor. Tables 6-10 and 6-11 list these processor instructions.

Table6-10. Control Transfer Instructions

Processor Instruction Instruction Description

LOOP Loop until count in (E)CX =0

LOOPcond Loop until count in (E)CX = 0 AND zeroflag = condition
JMP Jump to | ocati on

Jcc Jump if flag value(s) = condition

CALL Call procedure

RET Return from procedure

INT Call to interrupt procedure

INTO Call to interrupt procedure on overflow

IRET/IRETD Return from interrupt procedure

Table 6-11. Processor Control Instructions

Processor Instruction Instruction Description

NOP No operation (uses clocks)

HLT Halt

WAIT Wait until BUSY# pin is inactive(high)

180 Chapter 6 Processor Instructions

System Instructions

This section lists processor system instructions. System instructions handle the

following genera functions:

1. Verification of pointer parameters:

ARPL
LAR
LSL
VERR
VERW

Adjust RPL (requesting privilege level) of selector
Load AR (accessrights) byte

Load segment limit

Verify segment for reading

Verify segment for writing

2. Accessing/storing descriptor tables:

LGDT
LGDTW
LGDTD
SGDT
SGDTW
SGDTD
LLDT
SLDT
LIDT
LIDTW
LIDTD
SIDT
SIDTW
SIDTD

3. Input and Output:

IN
ouT
INS
OUTS

4. Interrupt control:

LIDT
LIDTW
LIDTD
SIDT
SIDTW
SIDTD
CLI

STI

Load GDT (global descriptor table) register
Load GDT register using 16-bit operand
Load GDT register using 32-bit operand
Store GDT register

Store GDT register using 16-bit operand
Store GDT register using 32-bit operand
Load LDT (local descriptor table) register
Store LDT register

Load IDT (interrupt descriptor table) register
Load IDT register using 16-bit operand
Load IDT register using 32-bit operand
Store IDT register

Store IDT register using 16-bit operand
Store IDT register using 32-bit operand

Input from port
Output to port

Input string from port
Output string to port

Load IDT (interrupt descriptor table) register

Load IDT register using 16-bit operand

Load IDT register using 32-bit operand

Store IDT register

Store IDT register using 16-bit operand

Store IDT register using 32-bit operand

Clear |F (interrupt enable) flag in (E)FLAGS register
Set IF flag

ASM 386 Assembly L anguage Reference Chapter 6

181

5. Multitasking:

LTR Load task register
STR Store task register
CLTS Clear TS (task switch) flag in CRO

6. Coprocessing and Multiprocessing:

ESC Escape instructions (floating-point coprocessor instructions)
CLTS Clear TS (task switch) flag in CRO

WAIT Wait until coprocessor is not busy

LOCK Assert bus LOCK# signal

Seealso: Floating-point coprocessor instructions, Chapter 7

7. Debugging and/or TLB (translation lookaside buffer) testing in a paged
memory system:

MOV Transfer data to/from debug and/or test registers
8. System control:

MOV Transfer data to/from control registers
LMSwW Load MSW (machine status word) into CRO
SMSW Store MSW

HLT Halt processor

9. Cache control (not available on Intel386 or 376 processors):

INVLPG Invalidate paging cache entry
INVD Invalidate data cache
WBINVD Write back and invalidate data cache

Instruction Statements

Instruction statements form the core of an assembler program. These statements
define the actual program that the processor (and optional floating-point
COprocessor) execute.

Instruction Statement Syntax
Each assembler instruction has the following syntax:
[l abel:][prefix] menonic[argunment[,...]]
Where:
I abel isaunique identifier that definesalabel. Labels are optional.

182 Chapter 6 Processor Instructions

prefix isaprocessor instruction prefix (LOCK or REP). An explicit prefix is
optional.

menpni ¢ isaprocessor or floating-point coprocessor instruction or a
programmer-defined codemacro.

argunent isanoperand. Some processor and floating-point coprocessor
instructions have no operand. For these instructions, operand(s) are
implicit. Other processor instructions require one, two, or three
explicit operands. Floating-point coprocessor instructions have, at
most, two explicit operands.

See also: Labels, Chapter 4
processor instructions, in this chapter
defining codemacros, Chapter 9

For both the processor and the floating-point coprocessor, the general form of an
instruction with operands is one of the following:

menoni ¢ src
where the execution result may be stored either in the source (sr c)
itself or in an implicit location.

mmenoni ¢ dest, src
where the execution result is stored either in the destination (dest)
operand or in an implicit location; the instruction's operation does not
change the source operand.

Theinstruction reference pages at the end of this chapter list the valid and/or
required operands for each processor instruction (I MJL, SHLD, and SHRD are the
only processor instructions that require three operands). The instruction reference
pages list the valid and/or required operands for each floating-point instruction.

See also: Instruction reference pages, Chapter 7

Instruction Attributes

In the context of an assembler program, every instruction has an address size
attribute; it may also have an operand size attribute and a stack size attribute. The
assembler determines these attributes.

ASM 386 Assembly L anguage Reference Chapter 6 183

Address Size Attribute
The assembler can calculate either 32- or 16-bit addresses and offsets.
The assembler determines an instruction's address size attribute as follows:

» If theinstruction has an operand, the assembler checks the USE attribute of the
segment containing the operand:

— For aUSE32 segment, the instruction's address size attribute is 32-bits.
— For aUSE16 segment, it is 16-bits.

» If theinstruction has no operand and no predefined address size attribute, the
assembler checks the USE attribute of the current code segment to determine
the address size attribute.

» If theinstruction contains an anonymous reference the assembler checks the
size of the register used in the reference. For example,

PUSH DWORD PTR [EAX]

implies the USE32 attribute. Because EAX is a 32-bit register, this PUSH
instruction's address size attribute is 32-bits.

See also: USE16 and USE32 segments, Chapter 2

Operand Size Attribute

When determining the operand size attribute for most instructions, the assembler
considers the type of the instruction operand(s), or, for no-operand instructions, the
type of the operand implied by the instruction's mnemonic. An instruction that
accesses dwords (32-bits) or words (16-bits) has an operand size attribute of 32- or
16-bits, respectively. Aninstruction that accesses a byte has the operand size
attribute of the current code segment.

The assembler will flag an inconsistency in the use of operands as an error. For
example,

ADD EAX, WORD_VAR

will be flagged as an error because EAX (32-bit register operand) cannot be used
with WORD VAR (16-hits).

184 Chapter 6 Processor Instructions

Stack Size Attribute

Instructions that use the stack have a stack size attribute of 32- or 16-bits. The
assembler determines an instruction's stack size attribute according to the USE
attribute of the stack segment. The stack segment USE attribute is either:

* The current default for the module containing the instruction

» Or, the USE attribute of the stack segment definition

Instructions with a stack size attribute of 32 use the 32-bit ESP register as the stack
pointer; those with a stack size attribute of 16 use the 16-bit SP register as the stack

pointer.

Instruction Encoding Format

All instruction encodings are subsets of the general instruction opcode format

shown in Figure 6-1.

Instruction Address-size Operand-size Segment
Prefix Prefix Prefix Override
Oorl Oorl Oorl Oorl
Number of Bytes
Opcode ModRM SIB Displacement Immediate
lor2 Oorl Oorl 0,1,2o0r4 0,1,2o0r4
Number of Bytes
W-3422

Figure 6-1. Instruction Encoding For mat

Instruction encodings consist of:
* Optional instruction prefixes
* Oneor two primary opcode bytes

» Possibly an address specifier consisting of:

— The ModRMbyte and the SI B (Scale Index Base) byte

— A displacement, if required
— Animmediate datafield, if required

ASM 386 Assembly L anguage Reference

Chapter 6

185

Encoding fields vary depending on the class of operation. Smaller encoding fields
can be defined within the primary opcode(s). These fields define the direction of
the operation, the size of the displacements, the register encoding, or the sign
extension.

Most instructions that refer to an operand in memory have an addressing form byte
following the primary opcode byte(s). (The exceptions are the | RET/ | RETD,

I NT/ I NTO, and all PUSH and POP instructions.) This byte, called the ModRMbyte,
specifies the address form to be used. Certain encodings of the ModRMbyte
indicate a second addressing byte, the SI B (Scale Index Base) byte; this follows the
ModRMbyte and is required to fully specify the addressing form (see Figure 6-2).

Addressing forms can include a displacement immediately following either the
ModRMor SI B byte. If adisplacement is present, it can be 8-, 16-, or 32-bits.

If the instruction specifies an immediate operand, the immediate operand follows
any displacement bytes; it is always the last field of the instruction.

Instruction Prefix Codes

186

Instruction prefix codes occur in three cases:

1. A programmer-specified REP or LOCK prefix precedes the instruction. The
assembler generates one of the following prefixes:

F3H REP prefix (used only with string instructions)

F3H REPE/ REPZ prefix (used only with string instructions)
F2H REPNE/ REPNZ prefix (used only with string instructions)
FOH LOCK prefix

2. A segment override is specified for the instruction. The assembler
automatically generates one of the following prefixes:

2EH CS segment override prefix
36H SS segment override prefix
3EH DS segment override prefix
26H ES segment override prefix
64H FS segment override prefix
65H GS segment override prefix

Chapter 6 Processor Instructions

3. Aninstruction's address and/or operand size requires, at most, a 2-byte prefix.
The assembler automatically generates one or more of the following prefixes:

67H Address size prefix
66H Operand size prefix

See also: LOCK and REP for more information about specifying prefixes with
instructions, in this chapter

Table 6-12 shows when the assembler generates address and operand size prefixes
for an instruction according to the relationships among its USE, address size, and
operand size attributes.

Table6-12. Generation of Address and Operand Size Prefixes

Prefixes Generated

by Assembler Attributes

Address Operand Address Operand USE of Current
67H 66H Size Size Code Segment
no no 16 16 USE16
no yes 16 32 USE16
yes no 32 16 USE16
yes yes 32 32 USE16
no no 32 32 USE32
no yes 32 16 USE32
yes no 16 32 USE32
yes yes 16 16 USE32

ASM 386 Assembly L anguage Reference Chapter 6 187

ModRM and SIB Bytes

188

The ModRMand SI B bytes follow the opcode byte(s) in many of the processor

instructions. They contain the following information:

* Indexing type or register number to be used in the instruction

* Register to be used, or more information to select the instruction
* Base, index, and scale information

Figure 6-2 shows the formats of the ModRMand SI B bytes.

ModRM Byte
7 6 5 4 3 2 1 0
Mod Reg/Opcode R/M

SIB (Scale Index Base) Byte
7 6 5 4 3 2 1 0

SF Index Base

W-3423

Figure 6-2. ModRM and SIB Byte Formats

The ModRMbyte contains three fields of information:

mod occupies the 2 most significant bits. The mod field combines with the
r/m field to form 32 possible values representing 8 general registers

and 24 indexing modes.

reg occupies the next 3-bits following the mod field. Thereg field
specifies either aregister number or three more bits of opcode
information. The meaning of the reg field is determined by the first

(opcode) byte of the instruction.

r/m occupies the 3 least significant bits. The r/m field can specify a
register as the location of an operand, or it can be combined with the

mod field to form the addressing-mode encoding.

Seealso: MOV Specia Registersinstruction for the control, test, and debug

register reg values, in this chapter

Chapter 6 Processor Instructions

32-hit based-indexed and scal ed-indexed addressing forms also require the SI B
byte. The presence of the SI B byte isindicated by certain encodings of ModRM
bytes. The SI B byte then includes the following fields:

sf occupies the 2 most significant bits. It specifies the scale factor.

index occupies the next 3-bits. It specifies the register number of the index
register.

base occupies the 3 least significant bits. It specifies the register number of
the base register.

The following tablesillustrate the addressing forms for 16- and 32-bit ModRMbytes
and for 32-hit SI B bytes:

Table 6-13 shows the 16-bit addressing forms specified by the ModRMbyte.
Table 6-14 shows the 32-bit addressing forms specified by the ModRMbyte.
Table 6-15 shows the 32-bit addressing forms specified by the SI B byte.

ASM 386 Assembly L anguage Reference Chapter 6 189

Table 6-13. 16-Bit Addressing Formswith ModRM Byte in Hexadecimal

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP Sl DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit(Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111
Effective ModRM Bits

Address MOD R/M | ModRM Values in Hexadecimal

[BX + Sl 000 00 08 10 18 20 28 30 38
[BX + DI 001 01 09 11 19 21 29 31 39
[BP +SI] 010 02 0A 12 1A 22 2A 32 3A
[BP + DI 00 011 03 0B 13 1B 23 2B 33 3B
[S1] 100 04 oc 14 1C 24 2C 34 3C
[D1] 101 05 oD 15 1D 25 2D 35 3D
disp16 110 06 OE 16 1E 26 2E 36 3E
[BX] 111 07 OF 17 1F 27 2F 37 3F
[BX + Sl]+disp8 000 40 48 50 58 60 68 70 78
[BX + DI]+disp8 001 41 49 51 59 61 69 71 79
[BP + Sl]+disp8 010 42 4A 52 5A 62 6A 72 7A
[BP + DI]+disp8 01 011 43 4B 53 5B 63 6B 73 7B
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C
[DI]+disp8 101 45 4D 55 5D 65 6D 75 7D
[BP]+disp8 110 46 4E 56 5E 66 6E 76 7E
[BX]+disp8 111 47 4F 57 5F 67 6F 77 7F
[BX + Sl]+disp16 000 80 88 90 98 A0 A8 BO B8
[BX + DI]+disp16 001 81 89 91 99 Al A9 Bl B9
[BX + Sl]+disp16 010 82 8A 92 9A A2 AA B2 BA
[BX + DI]+disp16 10 011 83 8B 93 9B A3 AB B3 BB
[Sl]+disp16 100 84 8C 94 9C A4 AC B4 BC
[DI]+disp16 101 85 8D 95 9D A5 AD B5 BD
[BP]+disp16 110 86 8E 96 9E A6 AE B6 BE
[BX]+disp16 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL 000 CoO C8 DO D8 EO ES8 FO F8
ECX/CX/CL 001 Cl C9 D1 D9 El E9 F1 F9
EDX/DX/DL 010 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF

disp8 denotes an 8-bit displacement following the ModRM byte that is sign-extended bits and added to the
index. disp16 denotes a 16-bit displacement following the ModRM byte that is added to the index. The
default segment register is SS for effective addresses containing a BP index; it is DS for other effective
addresses.

190 Chapter 6 Processor Instructions

Table 6-14. 32-Bit Addressing Formswith ModRM Byte in Hexadecimal

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP Sl DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit(Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111
Effective ModRM Bits

Address MOD R/M | ModRM Values in Hexadecimal

[EAX] 000 00 08 10 18 20 28 30 38
[ECX] 001 01 09 11 19 21 29 31 39
[EDX] 010 02 0A 12 1A 22 2A 32 3A
[EBX] 011 03 0B 13 1B 23 2B 33 3B
[--1[--] 00 100 04 oC 14 1C 24 2C 34 3C
disp32 101 05 oD 15 1D 25 2D 35 3D
[ESI] 110 06 OE 16 1E 26 2E 36 3E
[EDI] 111 07 OF 17 1F 27 2F 37 3F
disp8[EAX] 000 40 48 50 58 60 68 70 78
disp8[ECX] 001 41 49 51 59 61 69 71 79
disp8[EDX] 010 42 4A 52 5A 62 6A 72 7A
disp8[EBX] 011 43 4B 53 5B 63 6B 73 7B
disp8[--][--] 01 100 44 4C 54 5C 64 6C 74 7C
disp8[EBP] 101 45 4D 55 5D 65 6D 75 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E
disp8[EDI] 111 47 4F 57 5F 67 6F 77 7F
disp32[EAX] 000 80 88 90 98 A0 A8 BO B8
disp32[ECX] 001 81 89 91 99 Al A9 Bl B9
disp32[EDX] 010 82 8A 92 9A A2 AA B2 BA
disp32[EBX] 011 83 8B 93 9B A3 AB B3 BB
disp32[--][--] 10 100 84 8C 94 9C A4 AC B4 BC
disp32[EBP] 101 85 8D 95 9D A5 AD B5 BD
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL 000 (o] c8 DO D8 EO E8 FO F8
ECX/CX/CL 001 C1 C9 D1 D9 El E9 F1 F9
EDX/DX/DL 010 c2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 Cc4 CcC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 Cc7 CF D7 DF E7 EF F7 FF

[--]1[--] means a SIB byte follows the ModRM byte. disp8 denotes an 8-bit displacement following the SIB

byte that is sign-extended to 32 bits and added to the index. disp32 denotes a 32-bit displacement following

the ModRM byte that is added to the index.

ASM 386 Assembly L anguage Reference

Chapter 6

191

Table 6-15. 32-Bit Addressing Formswith SIB Bytein Hexadecimal

32 EAX ECX EDX EBX ESP [* ESI EDI
Base = 0 1 2 3 4 5 6 7
Base = 000 001 010 011 100 101 110 111
Scaled Index ‘ SF ‘ Index ‘ SIB Values in Hexadecimal

[EAX] 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B oC oD OE OF
[EDX] 010 10 11 12 13 14 15 16 17
[EBX] 00 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EDI] 111 38 39 3A 3B 3C 3D 3E 3F
[EAX*2] 000 40 41 42 43 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 4D 4E 4F
[EDX*2] 010 50 51 52 53 54 55 56 57
[EBX*2] 01 011 58 59 5A 5B 5C 5D 5E 5F
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 6D 6E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[EDI*2] 111 78 79 7A 7B 7C 7D 7E 7F
[EAX*4] 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 10 011 98 99 9A 9B 9C 9D 9E 9F
none 100 A0 Al A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AA AB AC AD AE AF
[ESI*4] 110 BO Bl B2 B3 B4 B5 B6 B7
[EDI*4] 111 B8 B9 BA BB BC BD BE BF
[EAX*8] 000 (o] C1 Cc2 C3 C4 C5 C6 Cc7
[ECX*8] 001 c8 Cc9 CA CB CcC CD CE CF
[EDX*8] 010 DO D1 D2 D3 D4 D5 D6 D7
[EBX*8] 11 011 D8 D9 DA DB DC DD DE DF
none 100 EO El E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7
[EDI*8] 111 F8 F9 FA FB FC FD FE FF

The [*] heading in column 5 of the SIB values means a disp32 with no base if MOD is 00, EBP otherwise.
Depending on the value of MOD, the following addressing modes are possible: disp32[index], disp8[EBP]
[index], and disp32[EBP] [index] with MOD values 00, 01, and 10, respectively.

192 Chapter 6 Processor Instructions

Processor Instruction Set Reference

This section first explains how to use the instruction set reference pages and how to
find instructions that are grouped with others. The reference pages for each
processor instruction are at the end of this section.

How to Read the Instruction Set Reference Pages

For each processor instruction, a table summarizes the opcode, instruction syntax,
clocks, and description of its operation. Following the instruction table are
reference page sections titled Operation, Discussion, Flags Affected, and
Exceptions by Mode. The following is an example of an instruction table:

Opcode Instruction Clocks Description

0C ib OR AL,imm8 2 OR immediate byte to AL

oD iw OR AX,imm16 2 OR immediate word to AX

oD id OR EAX,imm32 2 OR immediate dword to EAX
80/1ib OR r/m8,imm8 217 OR immediate byte to r/m byte
81/1 iw OR r/m16,imm16 217 OR immediate word to r/m word
81/1id OR r/m32,imm32 217 OR immediate dword to r/m dword
08 /r OR r/m8,r8 2/6 OR byte register to r/m byte

09 /r OR r/m16,ri6 2/6 OR word register to r/m word
09 /r OR r/m32,r32 2/6 OR dword register to r/m dword
OA /r OR r8,r/m8 217 OR r/m byte to byte register

0B /r OR r16,r/mi6 217 OR r/m word to word register
0B /r OR r32,r/m32 217 OR r/m dword to dword register

The following subsections explain the notational conventions and abbreviations
used in the instruction table columns and in the reference page sections.

ASM 386 Assembly L anguage Reference

Chapter 6 193

Opcode Column

The opcode column gives the complete object code produced for each form of the
instruction. When possible, codes are expressed as hexadecimal bytes in the same
order in which they appear in memory. Definitions of entries other than
hexadecimal bytes are as follows:

/digit isadigit from O to 7; it indicates that the ModRMbyte of the
instruction uses only the r / m(register or memory) operand. Thereg
field of the ModRM byte contains the digit (0..7) that provides an
extension to the instruction's opcode.

/r indicates that the ModRMbyte of the instruction contains both a
register operand and an r / moperand.

ch, cw, cd, cp
isal-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value
following the opcode that is used to specify a code offset and possibly
anew value for the code segment register.

ib,iwid isal-byte(ib), 2-byte (i w), or 4-byte (i d) immediate operand to the
instruction that follows the opcode, ModRM and SI B bytes. The
opcode determines if the operand is asigned value. All words (i w)
and dwords (i d) are given with the low-order byte first.

+rb, +rw, +rd
isaregister code from 0 to 7 that is added to the hexadecimal byte at
the | eft of the plus sign to form a single opcode byte. The register

codes are:
rb rw rd

AL=0 AX=0 EAX=0
CL=1 CX=1 ECX=1
DL=2 DX=2 EDX=2
BL=3 BX=3 EBX=3
AH=4 SP=4 ESP=4

=5 BP=5 EBP=5

-6 Sl =6 ESI =6
BH=7 DI =7 EDI =7

194 Chapter 6 Processor Instructions

Instruction Column

The instruction column gives the syntax of the instruction statement as it would
appear in a assembler program.

Thefollowing isalist of the symbols used to represent operands in the instruction

statements:

r8

rlé

r32

r/ nB

r/nmlé6

isone of the byteregisters AL, CL, DL, BL, AH, DH, CH, or BH.
For example, MOV r 8, i nm8 can be coded

MOV DH, 3

isone of the word registers AX, CX, DX, BX, SP, BP, SI, or DI. For
example, I NC r 16 can be coded

I NC BX

isone of the dword registers EAX, EBX, ECX, EDX, ESP, EBP, ESI,
or EDI. For example, DEC r 32 can be coded

DEC EDX

isa1-byte operand that is either the contents of a byte register (AL,
BL, CL, DL, AH, BH, CH, DH), or abyte from memory. For
example, MOV r8,r/m8 could be coded

MOV DL, AH
meaning set DL to the value in AH. It could aso be coded
MOV DL, PONER _FLAG

meaning set DL to the memory byte variable PONER_FLAG, where
POWNER_FLAGwas declared at the top of the program.

isaword register or memory operand used for instructions whose
operand size attribute is 16-bits. The word registers are AX, BX, CX,
DX, SP, BP, SI, DI. The contents of memory are found at the address
provided by the effective address computation. As an example, ADD
r/ mt6, i nm8 could be coded

ADD SP, 10

meaning add 10 to the contents of the SP register. It could also be
coded

ADD [BP] . WORD_ELEM 10

meaning add 10 to the memory word WORD_ELEM which is part of a
structure addressed by the BP register.

ASM 386 Assembly L anguage Reference Chapter 6 195

196

r/ nB2

ml6

nB2

i nmB

isadword register or memory operand used for instructions whose
operand size attribute is 32-bits. The dword registers are EAX, EBX,
ECX, EDX, ESP, EBP, ESI, EDI. The contents of memory are found
at the address provided by the effective address computation.

isamemory byte that can apply to all addressing forms. n8 can be a
simple memory variable of type BYTE, or it can be indexed. For
example, LODS n8 can be coded

LODS BSTRI NG
where BSTRI NGis a byte array addressed by the (E)Sl register.

isamemory word that can apply to all addressing forms. n16 can be
asimple variable of type WORD, or it can be indexed. For example,
MOV DS, mi 6 can be coded

MOV DS, DATA_SELECTOR

where DATA_SELECTOR isamemory variable declared with the
following statement

DATA_SELECTOR DW DATA
MOV DS, nil6 can also be coded
MOV DS, SELECTOR_ARRAY[DI |

where DI isarun-time index into the fixed word array
SELECTOR_ARRAY.

isamemory dword that can apply to all addressing forms.
isamemory operand whose type is not checked by the assembler.

See also: BTS and other bit instructions for an explanation of m
usage, in this chapter

isan immediate byte value. i nm8 is asigned number in the range -
128. . 127, asymbol equated to such a number, or an expression
evaluating to such a number. For example, ADD AL,i n8 can be
coded

ADD AL, 37

meaning add the number 37 to the AL register. | N AX,i n8 can be
coded

I'N AX, SERI AL_PORT

Chapter 6 Processor Instructions

if the following statement appears el sewhere within the program
SERI AL_PORT EQU 40H
MOV r8, i m8 can be coded
MOV DL, LENGTH PTR TABLE + 1

if the following statement appears el sewhere within the program
PTR_TABLE DW 30 DUP (?)

MOV DL, LENGTH PTR_TABLE + 1 loads 31 intothe DL register.
Negative values between -128 and -255 wrap around to positive
numbers because the largest negative number that can be represented
with 8-bitsis-128. Numbers between 127 and 255 can be used for the
representation of unsigned numbers. When instructions combine an

i m8 with aword or dword operand, the immediate value is sign-
extended to form aword or dword.

immlé isan immediate word value used for instructions whose operand size
attribute is 16-bits. Thisisanumber in the range -32763..32762, a
symbol equated to such a number, or an expression evaluating to such
anumber. For example, ADD AX, i nmi6 can be coded

ADD AX, 1000

meaning add the number 1000 to the AX register. MOV r 16, i nml6
can be coded

MOV DI, OFFSET COUNTER

where COUNTER is alabel. The instruction would move COUNTER'S
offset within its segment (not the contents of COUNTER) into the DI
register.

i mB2 is an immediate dword value used for instructions whose operand size
attribute is 32-bits. Thisisanumber in the range -
2147483648. . 2147483647.

rel 8 isalabel in the range from 128 bytes before the end of the instruction
to 127 bytes after the end of the instruction. For example, IMP rel 8
can be coded

JMP PROCESS_NEXT

if the label PROCESS_NEXT: appears nearby in the same code
segment. LOOP r el 8 can be coded

FLOOP XY_LOOP
if XY_LOOP: appears severa lines above.

ASM 386 Assembly L anguage Reference Chapter 6 197

198

rel 16,

rel 32

isalabel within the same code segment as the instruction. rel 16
applies to instructions with an operand size attribute of 16-bits; r el 32
applies to instructions with an operand size attribute of 32-bits. The
label cannot be aFAR label. For example, IMP r el 16 can be coded

JMP ABORTX

if the destination label is declared (possibly several pages away) in the
same code segment as the jump. CALL r el 16 can be coded

CALL GET_CONSOLE
if the following statement appears elsewhere in the program

EXTRN GET_CONSOLE: NEAR

ptrl16:16, ptr16: 32

isaFAR label, typically in a code segment different from that of the
instruction. These labels are also called full pointers. ptr16: 16is
used when the instruction's operand size attribute is 16-bits;

pt r16: 32 is used with the 32-hit attribute. The notation 16:16
indicates that the value of the pointer has two parts. The value on the
left of the colon is a 16-bit selector or value destined for the code
segment register. The value on the right corresponds to the offset
within the destination segment. For example, CALL pt r 16: 16 can be
coded

CALL SERVI CE_ACTI ON
if the following statement appears elsewhere in the program

EXTRN SERVI CE_ACTI ON: FAR

ml6: 16, nl6: 32

isamemory operand containing a full pointer composed of two
numbers. The number to the left of the colon corresponds to the
pointer's segment selector. The number to the right corresponds to its
offset. Liketheptr16: 16 and ptr16: 32 operands, m 6: 16 and
ml6: 32 operands are memory locations which contain full pointers.

Chapter 6 Processor Instructions

mL6&32, nml6&16, nB2&32
isamemory operand consisting of paired data items whose sizes are
indicated on the left and the right side of the ampersand. All memory
addressing forms are allowed. An n16&16 or n82&32 operand is used
by the BOUND instruction (the operand specifies upper and lower
bounds for array indices). LI DT n16&32 and LGDT n16&32 load a
word into the limit field, and a dword into the base field of the
Interrupt and Global Descriptor Table registers. For example, LGDT
ml6&32 can be coded

LGDT GLOBAL_ARRAY

if the following statement appears in a data segment elsewhere in the
program (and is followed by the array initializations)

GLOBAL_ARRAY LABEL BYTE

LI DT nmi6&32 can be coded

LI DT [BP]. | PT_TABLE
where | PT_TABLE is the element of a structure addressed by the BP
register.

noffs8, noffsl6, noffs32

(memory offset) is a simple memory variable of type BYTE, WORD, or
DWORD used by the MOV instruction. A simple offset relative to the
segment base specifies the actual address. No ModRMbyteisused in
theinstruction. The number shown with nof f s indicates its size,
which is determined by the address size attribute of the instruction.
For example, the instruction MOV nof f s32, EAX can be coded

MOV | TEM_COUNT, EAX

where | TEM_COUNT is a simple dword memory variable. These
special forms of the MOV instruction generate less code.

Sreg isasegment register. The segment register values are ES=0, CS=1,
SS=2, DS=3, FS=4, and GS=5.

ASM 386 Assembly L anguage Reference Chapter 6 199

Clocks Column

200

The clocks column gives the number of clock cyclesfor each form of the
instruction. The clock values apply only to the Intel 386 processor. Instructions
which are not available on the Intel 386 or 376 processors have adash (—) in the
clocks column.

The clock count calculations make the following assumptions:

1. Theinstruction has been prefetched and decoded and is ready for execution.

2. Buscyclesdo not require wait states.

3. There are no anumeric coprocessor data transfers or local bus HOLD requests
delaying processor access to the bus.

4. No exceptions are detected during instruction execution.

Memory operands are aligned on 4-byte boundaries.

Opcode
0C ib
0D iw
0D id
80/1ib
81/1 iw
81/1id
08 /r

09 /r

09 /r
OA /r
OB /r
OB /r

Instruction

OR AL,imm8

OR AX,imm16
OR EAX,imm32
OR r/m8,imm8
OR r/m16,imm16
OR r/m32,imm32
OR r/m8,r8

OR r/m16,ri6
OR r/m32,r32
OR r8,r/m8

OR r16,r/mi6
OR r32,r/m32

Clocks
2

2

2
217
217
217
2/6
2/6
2/6
217
217
217

Description

OR immediate byte to AL

OR immediate word to AX

OR immediate dword to EAX
OR immediate byte to r/m byte
OR immediate word to r/m word
OR immediate dword to r/m dword
OR byte register to r/m byte
OR word register to r/m word
OR dword register to r/m dword
OR r/m byte to byte register
OR r/m word to word register
OR r/m dword to dword register

Clock counts for instructions that have an r / m(register or memory) operand are
separated by aslash. The count to the left is used for aregister operand; the count
to theright is used for a memory operand.

Chapter 6

Processor | nstructions

The following symbols are used in the clock count specifications:
Nor n represents the number of times a clock cycleis repeated.

m represents the number of components in the next instruction executed,
where the entire displacement (if any) counts as one component, and
all other bytes of the instruction and prefix(es) each count as one
component.

pm = isalabel that applies when the instruction executes in protected
mode. pm =is omitted when the clock counts are the same for
protected, real address, and virtual 8086 modes.

Tor f indicates additional information about clock counts below the table.

Description Column
The description column briefly explains the various forms of the instruction.

The Operation and Discussion sections that follow the table contain more details of
the instruction's operation.

Operation Section

This reference page section contains an algorithmic description of the instruction
coded in a notation similar to the Algol languages. The a gorithms are composed
of the following elements:

1. Keywords of the algorithmic language, |abels, and processor registers are
capitalized; variables, functions, and prose descriptions are in capital and
lower case letters. Comments are enclosed within the symbol pairs (* and *).
Semi-colons separate the statements of the algorithms.

2. Compound statements are indented; compound statements are sometimes
terminated by ENDI F, ENDI FEL SE, ENDWHI LE, or ENDFOR for clarity or if
their component statements extend across page breaks.

3. A register name implies the contents of the register. A register name enclosed
in brackets ([1) implies the contents of the location whose address is
contained in that register. For example, ES: [DI] indicates the contents of the
location whose ES segment relative addressisin register DI. [SI] indicates
the contents of the address contained in register Sl relative to Sl's default
segment (DS) or overridden segment.

4. :=istheassignment operator. For example, A: = B; indicates that the value
of Bisassigned to A.

ASM 386 Assembly L anguage Reference Chapter 6 201

202

5.

=, NOT = >, >=, <, and <= are relational operators used to compare two values.
These operators mean "equal, not equal, greater than, greater or equal, less
than, less or equal," respectively. A relational expression suchasA =B is
TRUE if the value of A isequal to that of B; otherwise, it iSFALSE.

OperandSize represents the 16- or 32-bit operand size attribute of an
instruction. StackSize represents the 16- or 32-bit stack size attribute of an
instruction. AddressSize represents the 16- or 32-bit address size attribute of
the instruction. For example,

IF instruction = CMPSW THEN
Oper andSi ze : = 16;
ELSE
IF instruction = CMPSD THEN
Oper andSi ze : = 32;

indicates that the assembler will set the operand size attribute according to the
mnemonic form of the CMPS instruction used. The Operation sections for
certain instructions indicate how the assembler determines these attributes.

Seealso: OperandSize, StackSize, and AddressSize, Chapter 6

The following functions are used in the algorithmic descriptions:

1.

Truncate(value) reduces the size of the value to fit in 16-bits by discarding
high-order bits as needed.

Addr (operand) returns the effective address of the operand. (Thisvalueisthe
address cal culation prior to adding the segment base).

ZeroExtend(value) returns a value zero-extended to the operand size attribute
of theinstruction. For example, ZeroExtend of a byte-long -10D value
converts the byte from F6H to 000000F6H. If the value passed to ZeroExtend
and the operand size attribute are the same size, ZeroExtend returns the value
unaltered.

SignExtend(value) returns a value sign-extended to the operand size attribute
of the instruction. For example, SignExtend of a byte-long -10D converts the
byte from F6H to FFFFFFF6H. |f the value passed to SignExtend and the
operand size attribute are the same size, SignExtend returns the value
unaltered.

Push(value) pushes avalue onto the stack. The number of bytes pushed is
determined by the operand size attribute of the instruction.

Seealso: PUSHinstruction, in this chapter

Chapter 6 Processor Instructions

6. Pop(value) removes the value from the top of the stack and returnsit. The
statement

EAX 1= Pop();

assigns the 32-bit value that Pop took from the top of the stack to the EAX
register. Pop will return either aword or a dword depending on the operand
size attribute.

Seealso: POPinstruction, in this chapter

7. Bit[BitBase,BitOffset] returns the address of a bit within a bit string. Bitsare
numbered from right to left within registers and within memory bytes. If the
base operand is a 32-hit register, the offset can bein therange 0..31. This
offset addresses a bit within the indicated register. An example,

BI T[EAX, 21], isillustrated in Figure 6-3.

31 21 0

b BitOffset=21 ———

W-3424

Figure 6-3. BitOffset for BIT[EAX,21]

In memory, the 2 bytes of aword are stored with the low-order byte at the lower
address. If BitBase is a memory address, BitOffset can range from -2 gigabits to
+2 gigabits. The addressed bit is numbered (BitOffset MOD 8) within the byte at
address (BitBase + (BitOffset DIV 8)), where DIV is signed division with rounding
towards negative infinity, and MOD returns a positive number. Thisisillustrated
in Figure 6-4.

ASM 386 Assembly L anguage Reference Chapter 6 203

204

8.

Positive Offset

76543210 76543210 76543210
[
BitBase + 1 BitBase BitBase - 1
L

L BitOffset = 13 J

Negative Offset

76543210 76543210 76543210
T

BitBase BitBase - 1 BitBase - 2

L

—— BitOffset = 11 J

W-3425

Figure 6-4. Memory Bit Indexing

| OPer mission(Src, width(Src)) checks the 1/O permission bits for every byte
of the Src operand before external 1/0 operations.

See also: [/O permission bit map, Appendix A

SwitchTasks performs certain protected mode checks before the processor
changes the value of CS: (E) | P. Before the processor executesa CALL, RET,
I NT, | RET, or JMP instruction in protected mode, it checks the access rights
(AR) of the descriptor table entry for the selector associated with the new CS.
AR determines whether an intersegment control transfer is:

* Through agate
* A task switch
* Merely aFARjump to a code segment at the same privilege level

The SwitchTasks function is an abbreviation for the following checks and
actions:

I F new TSS descriptor NOT PRESENT (*P bit of AR = 0*) THEN
#NP(new TSS) ;

I F new TSS descriptor BUSY (*B bit of AR = 1*) THEN
#GP(new TSS) ;

I F new TSS descriptor limt < 103 (*or < 43 for 286 TSS*) THEN
#TS(new TSS) ;

Chapter 6 Processor Instructions

Save machine state in current TSS;
(*copy general, segnment, and flags registers to current TSS*)
I F nesting tasks THEN
new TSS backlink := current TSS sel ector;
ELSE (*in current TSS descriptor¥*)
AR := NOT BUSY; (*B bit = 0%)

ENDI FELSE;
TR (*task register*) := new TSS sel ector;
new TSS descriptor := BUSY; (*B bit of AR = 1*)

TS (*flag in MSWof CRO*) := 1;

Set general and EFLAGS (*NT := 1 if nested task*) registers
to new TSS val ues;

Load selectors for LDT, SS, CS, DS, ES, FS, GS, and, if paging
enabl ed, CR3 page directory physical address associated with
new TSS;

(*Check validity of selectors for LDT and Sreges; if paging
enabl ed, check CR3 associated with new TSS*)

(*Check LDT validity: *)

I'F LDT selector NOT within GDT linits

OR LDT sel ector does not index GDT THEN
#TS(LDT sel ector);

IF AR (*of LDT descriptor*) indicates non-LDT segnment THEN
#TS(LDT sel ector);

IF AR (*of LDT descriptor*) indicates NOT PRESENT THEN
#TS(LDT sel ector);

(*END check LDT validity*)

Load new LDT descriptor into LDT cache; (*valid LDT*)

CPL (*of new TSS*) := RPL; (*of new TSS CS sel ector*)

(*Check validity Cs: *)

IF CS selector = null THEN #TS(CS sel ector);

IF CS selector NOT within its descriptor table limts THEN
#TS(CS sel ector);

IF AR (*of CS descriptor*) indicates non-code segnment THEN
#TS(CS sel ector);

I'F nonconform ng AND DPL NOT = CPL THEN #TS(CS sel ector);

I'F conforming AND DPL > CPL THEN #TS(CS sel ector);

IF AR (*of CS descriptor*) indicates NOT PRESENT THEN
#NP(CS sel ector);

(*END checks CS validity*)

ASM 386 Assembly L anguage Reference Chapter 6

205

Load new CS descriptor into CS cache; (*valid CS*)
(*Check validity SS: *)
IF new SS selector = null THEN #TS(SS sel ector):
IF SS selector NOT within its descriptor table limts THEN
#TS(SS sel ector);
IF RPL (*of SS selector*) NOT = CPL THEN #TS(SS sel ector);
IF DPL (*of SS descriptor*) NOT = CPL THEN #TS(SS sel ector);
IF AR (*of SS descriptor*) indicates code
OR non-witabl e data segment THEN
#TS(SS sel ector);
IF AR (*of SS descriptor*) indicates NOT PRESENT THEN
#NP(SS sel ector);
(*END checks SS validity*)
Load new SS descriptor into SS cache; (*valid SS*)
(*Check each of DS, ES, FS, GS segnent selector(s) validity*)
I'F selector index NOT within its descriptor table limts THEN
#TS(segnent sel ector);
IF AR (*of new selector*) indicates non-data
OR non-readabl e code segnent THEN
#TS(segnent sel ector);
| F data OR nonconform ng code THEN
IF DPL < CPL THEN #GP(segnent sel ector);
IF DPL < RPL THEN #GP(segnment sel ector);
ENDI F; (*data or nonconform ng code*)
I F AR (*of segnent descriptor*)indi cates NOT PRESENT THEN
#NP(segnent sel ector);
(*END checks DS, ES, FS, GS validity?*)
Load new segnent descriptor(s) into Sreg cache(s); (*valid
DS, ES, FS, GS*)
IF PG (*bit 31 of CRO*) = 1 THEN (*pagi ng enabl ed*)
I'F current TSS CR3 = new TSS CR3 THEN
NOP;
ELSE
Fl ush page transl ation cache;
Load CR3 (*of new TSS*);
ENDI F; (*page directory base address in CR3*)

206 Chapter 6 Processor Instructions

Discussion Section

This section contains a further explanation of the instruction's operation.

Flags Affected Section
This section lists the flags that are affected by the instruction, as follows:

» |If aflagisaways cleared or always set by the instruction, the flag's value
(=0 or =1) isalso listed.

» If aflagisundefined, its value may be changed by the instruction in an
indeterminate manner.

Most processor instructions assign values to flags in a uniform manner. See each
instruction's Operation section for any unconventional flag value assignments it
makes. If aflagisnot mentioned in the Flags Affected section, the instruction
leaves it unchanged.

Seealso: Flags, Appendix A

Exceptions by Mode Section

This section lists the exceptions that can occur when the instruction executes. Each
processor operating mode can generate different exceptions:

Protected This subsection lists the exceptions that can occur when the
instruction executes in protected mode. If you write applicationsin a
protected mode environment, consult your operating system
documentation to determine what is done when processor exceptions
occur.

Real Address
This subsection lists the exceptions that can occur when the
instruction executes in real address mode. This mode has fewer
exception conditions than protected mode. Real address mode
exceptions do not pass error codes to interrupt procedures.

One possible exception for many instructionsis Interrupt 13. The
processor generates an Interrupt 13 whenever a memory operand is
partly or wholly accessed from the effective address OFFFFH in a
segment. This exception occurs because the second byte of the word
isat location 10000H, not at 0; thus, it exceeds the segment's
addressability limit.

ASM 386 Assembly L anguage Reference Chapter 6 207

Virtual 8086
This subsection lists the exceptions that can occur when the
instruction executes in virtual 8086 mode. Virtual 8086 mode allows
the processor to simulate virtual 8086 machines. Virtual 8086 mode
exceptions are the same as those for Real 8086, with the following
additions:

* |/Oinstructions cause a #GP(0) exception if the IOPL (1/O
privilege level) isless than 3 and an I/O permission bit is set.

* Memory references can cause page faults, noted in the
reference pages as #PF(fault-code).

When avirtual 8086 mode exception occurs, the processor is set to
protected mode.

Processor exception names are formed from a cross-hatch character (#) followed by
2 letters and an optional error code in parentheses. Table 6-16 summarizes the
processor exceptions.

208 Chapter 6 Processor Instructions

Table 6-16. Processor Exceptionsand Interrupts

Interrupt Instruction that May
Name Cause Number Generate this Interrupt
Divide error 0 DIV, IDIV
Debug exceptions 1 Any instruction
1-byte INT opcode 3 INT
2-byte interrupt 32-255 INT number
Interrupt on overflow 4 INTO
Array bounds check 5 BOUND
uD Invalid opcode 6 Any illegal instruction
#NM No math unit available 7 ESC, WAIT
#DF Double fault 8 Any instruction that can generate an
exception
Coprocessor segment 9 Any operand to an ESC instruction that
overrun wraps around the end of a segment
#TS Invalid task state segment 10 JMP, CALL, any
(TSS) interrupt, IRET
#NP Segment/gate not present 11 Any segment register modifier
#SS Stack fault 12 Any instruction that references memory
through the SS segment register
#GP General protection fault 13 Any memory reference instruction or
code fetch
#PF Page fault 14 Any memory reference instruction or
code fetch
#MF Math fault 16 ESC, WAIT
See also: Processor exceptions, Appendix A

ASM 386 Assembly L anguage Reference

Chapter 6 209

How to Look Up an Instruction

The processor instructions are presented in mnemonic al phabetical order, with the
following exceptions:

210

Floating-point instructions (ESC instructions for the a numeric coprocessor) are
at the end of Chapter 7.

String handling instructions that have byte, word, and dword variants (with
suffixes B, W, and D, respectively) are grouped with the basic instruction
form.

The REP prefix variants for string instructions are also grouped. Seethe
following instructions for the variants that are listed on the right:

CMPS CMPSB, CMPSW, and CMPSD
INS INSB, INSW, and INSD

LODS LODSB, LODSW, and LODSD
MQOVS MOV SB, MOV SW, and MOV SD
OuUTS OUTSB, OUTSW, and OUTSD
SCAS SCASB, SCASW, and SCASD
STOS STOSB, STOSW, and STOSD
REP REPE, REPZ, REPNE, and REPNZ

Some conversion instructions are grouped. See the following instructions for
the variant listed on the right:

CBW CWDE
CWD CDQ

See the Jcc and SETcc instruction tables for the many variant forms of these
conditional instructions. See LOOP for the LOOPcond variants.

See the following instructions for the variants listed on the right:

INT INTO
IRET IRETD
POPA POPAD
PUSHA PUSHAD
POPF POPFD
PUSHF PUSHFD
XLAT XLATB

Chapter 6 Processor Instructions

» Someload and store instructions are grouped. See the following instructions
for those listed on the right:

LGDT LIDT

LGDTW LGDTD, LIDTW, and LIDTD
SGDT SIDT

SGDTW SGDTD, SIDTW, and SIDTD
LDS LES, LFS, LGS and LSS

» Therotate instructions and some of the shift instructions are grouped. See the
following instructions for those listed on the right:

RCL RCR, ROL, and ROR
SAL SAR, SHL, and SHR

e See VERR for the VERWiInstruction.

The remainder of this chapter consists of the processor instruction reference pages
in mnemonic a phabetical order.

ASM 386 Assembly L anguage Reference Chapter 6 211

AAA

Processor Instructions

AAA AsCll Adjust after Addition

Opcode Instruction Clocks Description
37 AAA 4 ASCII adjust AL after addition
Operation
IF ((AL AND OFH) > 9) OR (AF = 1) THEN
AL := AL + 6;
AH 1= AH + 1;
AF = 1,
CF .= 1;
ELSE
CF :=0;
AF : = 0O;
ENDI FELSE;

AL := AL AND OFH;

Discussion

Code AAA only following an ADD instruction that leaves a byte result in the AL
register. The lower nibbles of the ADD operands should be in the range 0 through 9
(BCD digits) so that AAA adjusts AL to contain the correct decimal digit result. If
ADD produced a decimal carry, AAA increments the AH register and sets the carry
(CF) and auxiliary carry (AF) flagsto 1. If ADD produced no decimal carry, AAA
clearsthe carry and auxiliary flags (0) and leaves AH unchanged. In either case,
AL isleft with its upper nibble set to 0. To convert AL to an ASCII result, follow
the AAA instruction with OR AL, 30H.

Flags Affected

AF and CF as described in the Discussion section; OF, SF, ZF, and PF are
undefined.

Exceptions by Mode

Protected

None

212 Chapter 6 Processor Instructions

AAA

Real Address

None

Virtual 8086

None

ASM 386 Assembly L anguage Reference Chapter 6 213

AAD

AAD Ascll Adjust AX before Division

Opcode Instruction Clocks Description
D50A AAD 19 ASCII adjust AX before division
Operation
AL: =AH * OAH + AL;
AH: =0;
Discussion

AAD prepares 2 unpacked BCD digits (the least significant digit in AL, the most
significant digit in AH) for adivision operation that will yield an unpacked result.
Thisis done by setting AL to AL + (10 * AH), and then setting AH to 0. AX is
then equal to the binary equivalent of the original unpacked 2-digit number.

Flags Affected
SF, ZF, and PF as described in Appendix A; OF, AF, and CF are undefined

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

214 Chapter 6 Processor Instructions

AAM

AAM Ascll Adjust AX after Multiply

Opcode Instruction Clocks Description
D4 0A AAM 17 ASCII adjust AX after multiply
Operation
AH := AL / OAH;
AL := AL MOD OAH;
Discussion

Code AAMonly following a MUL instruction on two unpacked BCD digits that leaves
theresult in the AX register. AL contains the MUL result, becauseiit is always less
than 100. AAMunpacks thisresult by dividing AL by 10, leaving the quotient (most
significant digit) in AH and the remainder (least significant digit) in AL.

Flags Affected
F, ZF, and PF as described in Appendix A; OF, AF, and CF are undefined

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM 386 Assembly L anguage Reference Chapter 6 215

AAS

AAS AsCll Adjust AL after Subtraction

Opcode Instruction Clocks Description
3F AAS 4 ASCII adjust AL after subtraction
Operation
IF (AL AND OFH) > 9 OR AF = 1 THEN
AL := AL - 6;
AH := AH - 1;
AF = 1,
CF = 1;
ELSE
CF := 0;
AF : = 0O;
ENDI FELSE;

AL := AL AND OFH;

Discussion

Code AAS only following a SUB instruction that |eaves the byte result in the AL
register. The lower nibbles of the SUB operands should be in the range 0 through 9
(BCD digits) so that AAS adjusts AL to contain the correct decimal digit result. If
SUB produced adecimal carry, AAS decrements the AH register and sets the carry
(CF) and auxiliary carry (AF) flagsto 1. If SUB produced no decimal carry, AAS
clearsthe carry and auxiliary carry flags (0) and leaves AH unchanged. In either
case, AL isleft with its upper nibble set to 0. To convert AL to an ASCII result,
follow the AAS with OR AL, 30H.

Flags Affected

AF and CF as described in the Discussion section; OF, SF, ZF, and PF are
undefined

Exceptions by Mode

Protected

None

216 Chapter 6 Processor Instructions

AAS

Real Address

None

Virtual 8086

None

ASM 386 Assembly L anguage Reference Chapter 6 217

ADC

ADC Addwith Carry

Opcode Instruction Clocks Description

14ib ADC AL,imm8 2 Add with carry immediate byteto AL

15iw ADC AX,imm16 2 Add with carry immediate word to AX

15id ADC EAX,imm32 2 Add with carry immediate dword to EAX

80/2ib ADC r/m8,imm3 217 Add with carry immediate byte to r/m byte

81/2iw ADCr/ml6,imml6 2/7 Add with carry immediate word to r/m
word

81/2id ADCr/m32,imm32 2/7 Add with carry immediate dword to r/m
dword

83/2ib ADC r/ml16,imm3 217 Add with carry sign-extended immediate
byte to r/mword

83/2ib ADCr/m32,imm3 217 Add with carry sign-extended immediate
byte into r/m dword

10/r ADC r/m8,r8 217 Add with carry byte register to r/m byte

11/r ADC r/m16,r16 217 Add with carry word register to r/mword

11/r ADC r/m32,r32 217 Add with carry dword register to r/m dword

12/r ADC r8,r/m8 2/6 Add with carry r/m byte to byte register

13/r ADC r16,r/m16 2/6 Add with carry r/mword to word register

13/r ADC r32,r/m32 2/6 Add with CF r/m dword to dword register

Operation

IF (Src is byte) AND (Dest is word or dword) THEN
Dest := Dest + SignExtend(Src) + CF;

ELSE
Dest := Dest + Src + CF;

Discussion

ADC performs integer addition of the two operands, Dest and Src, and of the carry
flag, CF. ADC assigns the result to the first operand (Dest), and sets the flags
accordingly. ADCisusually executed as part of a multi-byte or multi-word addition
operation. When an immediate byte value is added to aword or dword operand,
the immediate value is first sign-extended to the size of the operand.

218 Chapter 6 Processor Instructions

ADC

Flags Affected
OF, SF, ZF, AF, CF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) if page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 219

ADD

ADD (integer) Add
Opcode Instruction Clocks Description
04ib ADD AL,imm8 2 Add immediate byteto AL
05iw ADD AX,imm16 2 Add immediate word to AX
05id ADD EAX,imm32 2 Add immediate dword to EAX
80/0ib ADD r/m8,imm38 217 Add immediate byte to r/m byte
81/0iw ADD r/ml6,imml6 2/7 Add immediate word to r/mword
81/0id ADD r/m32,imm32 2/7 Add immediate dword to r/m dword
83/0ib ADD r/m16,imm8 217 Add sign-extended immediate byte to r/m
word
83/0ib ADD r/m32,imm8 217 Add sign-extended immediate byte to r/m
dword
00 /r ADD r/m8,r8 217 Add byte register to r/m byte
01/r ADD r/m16,r16 217 Add word register to r/mword
01/r ADD r/m32,r32 217 Add dword register to r/m dword
02/r ADD r8,r/m8 2/6 Add r/m byte to byte register
03/r ADD r16,r/m16 2/6 Add r/mword to word register
03/r ADD r32,r/m32 217 Add r/m dword to dword register
Operation
IF (Src is byte) AND (Dest is word or dword) THEN
Dest := Dest + SignExtend(Src);
ELSE
Dest := Dest + Src;
Discussion

ADD performs integer addition of the two operands. ADD assigns the result to the
first operand (Dest) and sets the flags accordingly. When an immediate byte is
added to aword or dword operand, the immediate value is sign-extended to the size
of the operand.

Flags Affected
OF, SF, ZF, AF, CF, and PF as described in Appendix A

220

Chapter 6

Processor | nstructions

ADD

Exceptions by Mode

Protected

#GP(0) if the result isin a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 221

AND

AND Logica AND

Opcode Instruction Clocks Description
24ib AND AL,imm8 2 AND immediate byteto AL
25iw AND AX,imm16 2 AND immediate word to AX
25id AND EAX,imm32 2 AND immediate dword to EAX
80/4ib AND r/m8,imm3 217 AND immediate byte to r/m byte
81/4iw AND r/ml6,imml6 2/7 AND immediate word to r/m word
81/4id AND r/m32,imm32 2/7 AND immediate dword to r/m dword
83/4ib AND r/m16,imm8 217 AND sign-extended byte to r/mword
83/4ib AND r/m32,imm8 217 AND sign-extended byte to r/m dword
20/r AND r/m8,r8 217 AND byte register to r/m byte
21 /r AND r/mi16,r16 217 AND word register to r/mword
21/r AND r/m32,r32 217 AND dword register to r/m dword
22 /r AND r8,r/m8 2/6 AND r/m byte to byte register
23/r AND r16,r/m16 2/6 AND r/mword to word register
23/r AND r32,r/m32 2/6 AND r/m dword to dword register
Operation

Dest := Dest AND Src;

CF :=0;

OF :=0;
Discussion

If corresponding bits of the operands are both 1, AND sets the corresponding result
bit to 1. Otherwise, AND sets the corresponding result bit to 0.

Flags Affected
CF =0, OF = 0; PF, SF, and ZF as described in Appendix A

222 Chapter 6 Processor Instructions

AND

Exceptions by Mode

Protected

#GP(0) if the result isin a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 223

ARPL

ARPL Adjust RPL Field of Selector

Opcode Instruction Clocks Description

63 /r ARPL r/m16,r16 pm=20/21 Adjust RPL of r/ml16 to not less
than RPL of r16

Operation
IF RPL (*bits 0,1*) of Dest < RPL (*bits 0,1*) of Src THEN
F = 1;
RPL (*bits 0,1*) of Dest := RPL (*bits 0,1*) of Src;
ELSE
ZF 1= 0;
Discussion

The ARPL instruction has 2 operands:

1. Thefirst operand is a 16-bit memory variable or word register that contains the
value of a selector.

2. The second operand is aword register that also contains a selector.

If the RPL field (requesting privilege level -- lower two bits) of the first operand is
less than the RPL field of the second operand, ARPL sets ZF to 1 and increases the
RPL field of the first operand to match that of the second operand. Otherwise,
ARPL clears ZF (0) and makes no change in the first operand.

ARPL appears only in operating system software. It is used to guarantee that a
selector parameter to a subroutine does not request more privilege than the caller is
allowed. The second operand of ARPL is normally aregister that contains the CS
selector value of the caller.

Flags Affected

ZF as described in the Discussion section
Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

224 Chapter 6 Processor Instructions

ARPL

Real Address
Interrupt 6

Virtual 8086
Interrupt 6; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 225

BOUND

BOUND check Array Index Against Bounds

Opcode
62 /r
62 /r

Instruction Clocks Description
BOUND r186, 107 Interrupt 5if r16 is not within bounds m16& 16
BOUND r32, 107 Interrupt 5if r32 is not within bounds m32& 32

T Does not include clocks for Interrupt 5.

Operation

IF (LeftSrc < [RightSrc] (* lower limt *)
OR LeftSrc > [RightSrc + OperandSize/8]) (* upper limt *)

THEN I nterrupt 5;

Discussion

BOUND checks that a signed array index iswithin limits. The register operand
contains the index. Contiguous dword or word operands specify the lower and
upper limits. If theindex is not within bounds, an Interrupt 5 occurs; the return
El P points to the BOUND instruction. The second operand must be a memory
operand, not aregister.

The bounds limit data structure can be placed in memory just before the array
itself. This makes the limits addressable via a constant offset from the beginning of
the array.

Flags Affected

None

Exceptions by Mode

Protected

226

Interrupt 5 if the bounds test fails; #GP(0) for an illegal memory operand effective
addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal addressin the
SS segment; #PF(fault-code) for a page fault; #UD if the second operand is a
ModRMbyte representing a register

Chapter 6 Processor Instructions

BOUND

Real Address

Interrupt 5 if the bounds test fails; Interrupt 13 if any part of the operand would lie
outside the effective address space from 0 to OFFFFH; Interrupt 6 if the second
operand is aregister

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 227

BSF

BSF Bit Scan Forward

Opcode Instruction Clocks Description
OF BC BSF r16,r/m16 10+3nt Bit scan forward on r/mword
OF BC BSF r32,r/m32 10+3nt Bit scan forward on r/m dword

T nis the number of leading zero bits.

Operation

IF r/m= 0 THEN
F = 1;
regi ster : = UNDEFI NED;
ELSE
temp := 0;
ZF = 0;
VWH LE Bit[r/mtenp] = 0 DO
tenp := tenmp + 1;
ENDVWHI LE;
register := tenp;

Discussion

BSF scans the bits in the second operand from right to left starting at bit 0. BSF
places the index of the first set bit that it finds into the first operand and clears ZF.
If no bit is set in the second operand, BSF sets ZF, and the first operand is
undefined.

Flags Affected

ZF as described in the Discussion section
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

228 Chapter 6 Processor Instructions

BSF

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 229

BSR

BSR Bit Scan Reverse

Opcode Instruction Clocks Description
OF BD BSR r16,r/m16 10+3nT Bit scan reverse on r/mword
OF BD BSR r32,r/m32 10+3nT Bit scan reverse on r/m dword
T nis the number of leading zero bits.
Operation
IF r/m= 0 THEN
F = 1;
regi ster : = UNDEFI NED;
ELSE
tenp : = OperandSi ze - 1;
ZF 1= 0;
VWH LE Bit[r/mtenp] = 0 DO
temp := tenp - 1;
ENDWHI LE;
register := tenp;
Discussion

BSR scans the bits in the second operand from left to right starting at the most
significant bit (31 or 15). BSR places the index of the first bit that it finds set into
the first operand and clears ZF. If no bit is set, BSR sets ZF, and the first operand is

undefined.

Flags Affected

ZF as described in the Discussion section

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a

page fault

230 Chapter 6

Processor | nstructions

BSR

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 231

BSWAP

BSWAP Byte Swap (not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description
OFC8+rd BSWAPr32 — Swaps r32 high byte for low byte, middle-
high byte for middlie-low byte
Operation
tenp :=r 32

r 32 [0..7] := tenp[24..31];
r 32 [8..15] := tenp[16..23];
r 32 [16..23] := tenp[8..15];
r 32 [24..31] := tenmp[0..7];

Discussion

BSWAP swaps the high bytes and low bytes of a 32-bit register. BSWAP takes a
single operand as its source and destination.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

232 Chapter 6 Processor Instructions

BT

BT BitTest

Opcode Instruction Clocks Description

OF A3/r BT r/ml6,r16 3/12 Save bit in carry flag
OF A3/r BT r/m32,r32 3/12 Save bit in carry flag
OF BA /4ib BT r16,imm8 3 Save bit in carry flag
OF BA /4ib BT r32,imm8 3 Save bit in carry flag
OF BA /4ib BT m,imm16 6 Save bit in carry flag
OF BA /4ib BT m,imm32 6 Save bit in carry flag
OF BA /4ib BT m 6 Save bit in carry flag
Operation

CF .= Bit[LeftSrc, RightSrc];

Discussion
BT copies the value of a selected bit into the carry flag. The BT operands specify:

* A bit string (register first operand) or bit string base address (memory first
operand)

* A bit offset (second operand) to the selected bit
If the first operand is aregister, the bit offset of the selected bit can be specified as

an immediate byte constant as well as avalue in ageneral register. The bit offset is
taken modulo the operand size, so the rangeis 0..31 (or 0..15 for a 16-bit operand).

If the bit string isin memory, the first operand is its base address, and the second
operand is an offset relative to this base address. The USE attribute of the first
operand determines register size and offset limits for the second operand.

If the first operand isin a USE32 segment, the second operand must be either a
dword register, containing avalue, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).
For non-combinable USE32 segments, assembly time address cal culation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.

233

ASM 386 Assembly L anguage Reference Chapter 6

BT

If the first operand isin a USE16 segment, the second operand must be either a
word register, containing avalue, or an immediate constant value within the range:

-32 Kbits to (+32 Kbits - 1).

For non-combinable USE16 segments, assembly time address cal culation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string isin memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or aword aligned 16-
bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

» Effective Address + (4 * (BitOffset DIV 32)) for a 32-bit operand size
» Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit. Therefore, avoid referencing areas of memory close to address space
holes. In particular, avoid references to memory-mapped /O registers. Instead,
use the MOV instructions to load from these addresses. Then, use aregister form of
BT to manipulate the data.

The BT mform (without offset) assumes an operand of type DBI T, but the
assembler does not check the type. For example,

BT BAZ. Y
accesses a bit where BAZ and Y were defined as follows:

: structure definition
FOO STRUC

X DBIT 11 DUP (110B)
Y DBIT 1B

Z DBIT 1B

FOO ENDS

BAZ FOO <>

Flags Affected

234

CF as described in the Discussion section; all other flags are undefined

Chapter 6 Processor Instructions

BT

Exceptions by Mode

Protected

#GP(0) if the result isin a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 235

BTC

BTC Bit Testand Complement

Opcode Instruction Clocks Description
OF BB /r BTC r/m16,r16 6/13 Save hit in carry flag; complement bit
OF BB /r BTC r/m32,r32 6/13 Save hit in carry flag; complement bit
OF BA /7ib BTC r16,imm8 6 Save bit in carry flag; complement bit
OFBA /7ib BTC r32,imm8 6 Save bit in carry flag; complement bit
OF BA /7ib BTC m,imm16 8 Save bit in carry flag; complement bit
OF BA /7ib BTC m,imm32 8 Save bit in carry flag; complement bit
OFBA /7ib BTCm 8 Save bit in carry flag; complement bit
Operation

CF .= Bit[LeftSrc, RightSrc];

Bit[LeftSrc, RightSrc] := NOT Bit[LeftSrc, Ri ghtSrc];
Discussion

BTC copies the value of a selected bit into the carry flag and then complements the
bit. The BTC operands specify:

* A bit string (register first operand) or bit string base address (memory first
operand)

* A bit offset (second operand) to the selected bit

If the first operand is aregister, the bit offset of the selected bit can be specified as
an immediate byte constant as well as avalue in ageneral register. The bit offset is
taken modulo the operand size, so the rangeis 0..31 (or 0..15 for a 16-bit operand).

If the bit string isin memory, the first operand is its base address, and the second
operand is an offset relative to this base address. The USE attribute of the first
operand determines register size and offset limits for the second operand.

If the first operand isin a USE32 segment, the second operand must be either a
dword register, containing a value, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).

For non-combinable USE32 segments, assembly time address cal culation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.

236 Chapter 6 Processor Instructions

BTC

If the first operand isin a USE16 segment, the second operand must be either a
word register, containing avalue, or an immediate constant value within the range:

-32 Kbits to (+32 Kbhits - 1).

For non-combinable USE16 segments, assembly time address cal culation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string isin memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or aword aligned 16-
bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

» Effective Address + (4 * (BitOffset DIV 32)) for a 32-bit operand size
» Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit. Therefore, avoid referencing areas of memory close to address space
holes. In particular, avoid references to memory-mapped /O registers. Instead,
use the MOV instructions to load from (or store to) these addresses. Use aregister
form of BTC to manipulate the data.

The BTC mform (without offset) assumes an operand of type DBI T, but the
assembler does not check the type. For example,

BTC BAZ. Y
accesses a bit where BAZ and Y were defined as follows:

: structure definition
FOO STRUC

X DBIT 11 DUP (110B)
Y DBIT 1B

Z DBIT 1B

FOO ENDS

BAZ FOO <>

Flags Affected

CF as described in the Discussion section; the other flags are undefined

ASM 386 Assembly L anguage Reference Chapter 6 237

BTC

Exceptions by Mode

Protected

#GP(0) if the result isin a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

238 Chapter 6 Processor Instructions

BTR

BTR Bit Test and Reset

Opcode Instruction Clocks Description

OF B3 /r BTR r/m16,r16 6/13 Save hit in carry flag; clear bit
OF B3 /r BTR r/m32,r32 6/13 Save hit in carry flag; clear bit
OFBA /6ib BTRr16,imm8 6 Save bit in carry flag; clear bit
OFBA /6ib BTRr32,imm8 6 Save bit in carry flag; clear bit
OFBA /6ib BTR m,imml6 13 Save bit in carry flag; clear bit
OFBA /6ib BTR m,imm32 13 Save bit in carry flag; clear bit
OFBA/6ib BTRm 13 Save bit in carry flag; clear bit
Operation

CF .= Bit[LeftSrc, RightSrc];
Bit[LeftSrc, RightSrc] := 0;

Discussion

BTR copies the value of a selected bit into the carry flag and then clears the bit.
The BTR operands specify:

* A bit string (register first operand) or bit string base address (memory first
operand)

* A bit offset (second operand) to the selected bit

If the first operand is aregister, the bit offset of the selected bit can be specified as

an immediate byte constant as well as avalue in ageneral register. The bit offset is
taken modulo the operand size, so the rangeis 0..31 (or 0..15 for a 16-bit operand).

If the bit string isin memory, the first operand is its base address, and the second
operand is an offset relative to this base address. The USE attribute of the first
operand determines register size and offset limits for the second operand.

If the first operand isin a USE32 segment, the second operand must be either a
dword register, containing avalue, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).

ASM 386 Assembly L anguage Reference Chapter 6 239

BTR

240

For non-combinable USE32 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.

If thefirst operand isin a USE16 segment, the second operand must be either a
word register, containing avalue, or an immediate constant value within the range:

-32 Kbits to (+32 Kbits - 1).

For non-combinable USE16 segments, assembly time address cal culation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string isin memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or aword aligned
16-bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

» Effective Address + (4 * (BitOffset DIV 32)) for a 32-bit operand size
» Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit. Therefore, avoid referencing areas of memory close to address space
holes. In particular, avoid references to memory-mapped /O registers. Instead,
use the MOV instructions to load from (or store to) these addresses. Use aregister
form of BTR to manipulate the data.

The BTR mform (without offset) assumes an operand of type DBI T, but the
assembler does not check the type. For example,

BTR BAZ. Y
accesses a bit where BAZ and Y were defined as follows:

: structure definition
FOO STRUC

X DBIT 11 DUP (110B)
Y DBIT 1B

Z DBIT 1B

FOO ENDS

BAZ FOO <>

Chapter 6 Processor Instructions

BTR

Flags Affected

CF as described in the Discussion section; the other flags are undefined
Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 241

BTS

BTS BitTestand Set

Opcode Instruction Clocks Description

OF AB Ir BTSr/mi6,r16 6/13 Save hit in carry flag; set bit
OF AB Ir BTSr/im32,r32 6/13 Save hit in carry flag; set bit
OFBA/5ib BTSrl6imm8 6 Save bit in carry flag; set bit

OFBA /5ib BTSr32,imm3
OFBA /5ib BTSm,imml6
OFBA /5ib BTSm,imm32
OFBA/5ib BTSm

Save bit in carry flag; set bit
Save bit in carry flag; set bit
Save bit in carry flag; set bit
Save bit in carry flag; set bit

0 0 0 O

Operation
CF .= Bit[LeftSrc, RightSrc];
Bit[LeftSrc, RightSrc] := 1;
Discussion

242

BTS copies the value of a selected bit into the carry flag and then sets the bit. The
BTS operands specify:

* A bit string (register first operand) or bit string base address (memory first
operand)

* A bit offset (second operand) to the selected bit

If the first operand is aregister, the bit offset of the selected bit can be specified as

an immediate byte constant as well as avalue in ageneral register. The bit offset is
taken modulo the operand size, so the rangeis 0..31 (or 0..15 for a 16-bit operand).

If the bit string isin memory, the first operand is its base address, and the second
operand is an offset relative to this base address. The USE attribute of the first
operand determines register size and offset limits for the second operand.

If the first operand isin a USE32 segment, the second operand must be either a
dword register, containing a value, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).

Chapter 6 Processor Instructions

BTS

For non-combinable USE32 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.

If thefirst operand isin a USE16 segment, the second operand must be either a
word register, containing avalue, or an immediate constant value within the range:

-32 Kbits to (+32 Kbhits - 1).

For non-combinable USE16 segments, assembly time address cal culation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string isin memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or aword aligned
16-bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

» Effective Address + (4 * (BitOffset DIV 32)) for a 32-bit operand size
» Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit. Therefore, avoid referencing areas of memory close to address space
holes. In particular, avoid references to memory-mapped /O registers. Instead,
use the MOV instructions to load from (or store to) these addresses. Use aregister
form of BTS to manipulate the data.

The BTS mform (without offset) assumes an operand of type DBI T, but the
assembler does not check the type. For example,

BTS BAZ. Y
accesses a bit where BAZ and Y were defined as follows:

: structure definition
FOO STRUC

X DBIT 11 DUP (110B)
Y DBIT 1B

Z DBIT 1B

FOO ENDS

BAZ FOO <>

ASM 386 Assembly L anguage Reference Chapter 6 243

BTS

Flags Affected

CF as described in the Discussion section; the other flags are undefined
Exceptions by Mode

Protected

#GP(0) if the result isin a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, or GS segments; #SS(0) for an illegal
address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
form O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

244 Chapter 6 Processor Instructions

CALL

CALL call Procedure

Opcode
E8 cw

FF /2
9A cd

9A cd
9A cd

9A cd

9A cd
FF/3

FF/3
FF/3

FF/3

FF/3
E8 cd

FF /2
9A ¢p

9A ¢p
9A ¢p

9A cp

9A cp

Instruction
CALL rel16

CALL r/ml16
CALL ptri6:16

CALL ptri6:16
CALL ptri6:16

CALL ptr16:16

CALL ptr16:16
CALL ml6:16

CALL ml6:16
CALL ml6:16

CALL mi16:16

CALL mi16:16
CALL rel32

CALL r/m32
CALL ptrl6:32

CALL ptrl6:32
CALL ptrl6:32

CALL ptr32:32

CALL ptrl6:32

Clocks
7+m

7+m/10+m
174+m,pm=34+m

pm=52+m
pm=86+m

pm=94+4x+m

pm=217-309T
22+m,pm=38+m

pm=56+m
pm=90+m

pm=98+4x+m

pm=222-314T
7+m

7+m/10+m
17+m,pm=34+m

pm=52+m
pm=86+m

pm=94+4x+m

pm=217-309T

ASM 386 Assembly L anguage Reference

Description

Call near, displacement relative to
next instruction

Call near, register indirect/memory
indirect

Call intersegment to full pointer
given

Call gate, same privilege

Call gate, more privilege, no
parameters

Call gate, more privilege, x
parameters

Call to task

Call intersegment, address at r/m
dword

Call gate, same privilege

Call gate, more privilege, no
parameters

Call gate, more privilege, x
parameters

Call to task

Call near, displacement relative to
next instruction

Call near, indirect

Call intersegment, to full pointer
given

Call gate, same privilege

Call gate, more privilege, no
parameters

Call gate, more privilege, X
parameters

Call to task

Chapter 6 245

CALL

FF /3 CALL m16:32 22+m,pm=38+m Call intersegment, address at r/m
dword

FF /3 CALL m16:32 pm=56+m Call gate, same privilege

FF /3 CALL m16:32 pm=90+m Call gate, more privilege, no
parameters

FF /3 CALL m16:32 pm=98+4x+m Call gate, more privilege, x
parameters

FF/3 CALL m16:32 pm=222-314Jr Call to task

T See also: 80386 Programmer's Reference Manual

Operation
| F destination address > its segnent linmit THEN #GP(O0);
IF rel16 or rel 32 type call THEN (*near relative call*)
| F OperandSi ze = 16 THEN
Push(IP);
EIP := (EIP + rel 16) AND 0000FFFFH;
ELSE (*OperandSi ze = 32*)
Push(El P):
EIP := EIP + rel 32;
ENNDI F; (*rel 16 or rel 32 type call*)
IF r/m6 or r/nB2 type call THEN (*near absolute call*)
| F OperandSi ze = 16 THEN
Push(I P);
EIP := [r/nml6] AND OO00FFFFH;
ELSE (*OperandSi ze = 32*)
Push(El P);
EIP :=[r/nm2];
ENDI F; (*r/ml6 or r/nB2 type call*)
IF (PE=0OR(PE=1ANDWVWM=1))
(*mode = real address or virtual 8086*)
AND instruction = FarCall THEN
(*operand is ml6: 16/ 32 or ptrl6: 16/ 32*)
| F OperandSi ze = 16 THEN
Push(CS);
Push(IP); (*next instruction address: 16-bits*)
ELSE (*OperandSi ze = 32*)
Push(CS);
Push(El P);

246 Chapter 6 Processor Instructions

CALL

| F operand is nl6: 16 or ml6:32 THEN (*indirect far call*)
| F OperandSi ze = 16 THEN
CS:IP := [nl6: 16];
EIP : = EI P AND 0000FFFFH; (*clear upper bits*)
ELSE
CS:EIP := ptri6: 32;
ENDI F; (*ptr16:16 or ptril6:32 type call¥*)
ENDI F; (*nmpde = real address or virtual 8086*)
IF (PE =1 AND VM = 0) (*npode = protected*)
AND instruction = FarCall THEN
I F new CS selector is null THEN #GP(0);
IF new CS selector is NOT within its descriptor table limts
THEN #GP(new CS sel ector);
(*Exam ne AR of selected descriptor for various
| egal val ues; dependi ng on val ue: *)
GOTO CONFORM NG_CODE_SEGVENT;
GOTO NONCONFORM NG_CODE_SEGVENT;
GOTO CALL_GATE;
GOTO TASK_GATE;
GOTO TASK_STATE_SEGVENT;
ELSE #GP(code segnment selector); (*AR illegal*)

CONFORM NG_CODE_SEGVENT:

IF DPL > CPL THEN #GP(code segnment sel ector);

| F segnment NOT PRESENT THEN
#NP (code segnent sel ector);

Stack must be big enough for return address ELSE
#SS(0) ;

IF target_offset NOT in code segnent linmit THEN #GP(O0);

Load code segnent descriptor into CS cache;

Load CS with new code segnent selector;

Load EIP with ZeroExtend(new of fset);

| F OperandSi ze = 16 THEN
EIP : = EIP AND 0000FFFFH;

NONCONFORM NG_CODE_SEGVENT:
IF RPL > CPL THEN #GP(code segnment sel ector);
I'F DPL NOT = CPL then #GP(code segnent sel ector);
| F segnent NOT PRESENT THEN
#NP(code segnment sel ector);
Stack must be big enough for return address ELSE#SS(0);
IF target_offset NOT in code segnent linmt THEN #GP(O0);
Load code segnent descriptor into CS cache;

ASM 386 Assembly L anguage Reference Chapter 6

247

CALL

Load CS with new code segnent selector;
Set RPL of CS to CPL;
Load EIP with ZeroExt end(new of fset);
| F OperandSi ze = 16 THEN
EIP := EI P AND 0000FFFFH;

CALL_GATE:
IF call gate DPL < CPL THEN #GP(call gate selector);
IF call gate DPL < RPL THEN #GP(call gate selector);
I'F call gate NOT PRESENT THEN #NP(call gate selector);
(*Exam ne code segnent selector in call gate descriptor: *)
IF selector is null THEN #GP(0);
IF selector is NOT within its descriptor table Iimts THEN
#GP (code segnent sel ector);
I F AR of sel ected descriptor indicates non-code segment THEN
#GP(code segnent sel ector);
| F DPL of selected descriptor > CPL THEN
#GP(code segnent sel ector);
I F non-confornmi ng code segnent AND DPL < CPL THEN
GOTO MORE_PRI VI LEGE;
ELSE
GOTO SAME_PRI VI LEGE;

MORE_PRI VI LEGE:
Get new SS selector for new privilege level from TSS;
(*Check selector and descriptor for new SS: *)
IF selector is null THEN #TS(0);
I F selector index NOT within descriptor table Iimts THEN
#TS(SS sel ector);
IF selector's RPL NOT = DPL of code segnent THEN
#TS(SS sel ector);
| F stack segnent DPL NOT = DPL of code segment THEN
#TS(SS sel ector);
Descriptor must indicate witable data segment ELSE
#TS(SS sel ector);
I F segnent NOT PRESENT THEN #SS(SS sel ector);
| F OperandSi ze = 32 THEN
New stack nust have room for paraneters plus 16 bytes
ELSE #SS(0);
IF target_offset NOT in code segnent linmit THEN #GP(O0);
Load new SS: ESP val ue from TSS;
Load new CS: EI P value from gate;

248 Chapter 6 Processor Instructions

CALL

ELSE (*OperandSi ze = 16*)

New stack nmust have room for paraneters plus 8 bytes
ELSE #SS(0);

IF target_offset NOT in code segnent linit THEN #GP(O0);
Load new SS: SP from TSS;
Load new CS: I P value from gate;

ENDI FELSE;

Load CS descriptor;

Load SS descriptor;

Push long pointer of old stack onto new stack;

Get word count fromcall gate, nask to 5-bits;

Copy paraneters fromold stack onto new stack;

Push return address onto new stack;

Set CPL to stack segment DPL;

Set RPL of CS to CPL;

(*END CALL_GATE to MORE_PRI VI LEGE*)

SAME_PRI VI LEGE:
| F OperandSi ze = 32 THEN
Stack must have room for 6-byte return address
(*padded to 8 bytes*) ELSE #SS(0);
IF target_offset NOT in code segnent linit THEN #GP(O0);
Load CS: EIP from gate;
ELSE (*OperandSi ze = 16*)
Stack must have room for 4-byte return address
ELSE #SS(0);
IF target_offset NOT in code segnent linit THEN #GP(O0);
Load CS: 1P fromgate;
ENDI FELSE;
Push return address onto stack;
Load code segnent descriptor into CS cache;
Set RPL of CS to CPL;
(*END CALL_GATE*)

TASK_GATE:

I F task gate DPL < CPL THEN #TS(gate sel ector);

I F task gate DPL < RPL THEN #TS(gate sel ector);

I F task gate NOT PRESENT THEN #NP(gate sel ector);

(*Exam ne selector to TSS, given in task gate descriptor: *)
Must specify global in local/global bit ELSE #TS(TSS sel ector);
I ndex nust be within GDT linits ELSE #TS(TSS sel ector);

(*END checks selector in task gate descriptor*)

ASM 386 Assembly L anguage Reference Chapter 6 249

CALL

I F new TSS stack selector(s) THEN
(*Check new TSS privil eged stack selectors: *)
I F stack sel ector NOT PRESENT THEN #SS(bad stack sel ector);
| F stack selector invalid THEN #TS(bad stack sel ector);
(*END checks new TSS stack sel ector(s)*)
Swi t chTasks (*wi th nesting*) to TSS;
IF (E)IP NOT in code segrment limt THEN #TS(O0);

TASK_STATE_SEGVENT:
IF TSS DPL < CPL THEN #TS(TSS sel ector);
IF TSS DPL < RPL THEN #TS(TSS sel ector);
Swi t chTasks (*with nesting*) to TSS;
IF (E)IP NOT in code segnent |limt THEN #TS(O0);

Discussion

250

The CALL instruction causes a procedure (designated by the operand) to be
executed. After aRET instruction is executed within the procedure, the caller's
execution resumes at the instruction following the CALL.

The assembler automatically generates the correct form of CALL according to the
procedure operand'stype. A procedure name is alabel representing the destination
of the CALL.

Near calls are those with r/ m6, r/ n82, rel 16, or r el 32 operands. Near callsdo
not need to change or save the segment register (CS) value. The CALL rel 32 and
CALL r el 16 forms determine the destination by adding a signed offset to the next
instruction's address:

* Therel 32 formisused when the operand size attribute is 32-bits. The result
is stored in the 32-bit EIP register.

* Therel 16 formisused when the CALL's operand size attribute is 16-bits. The
result is also stored in EIP, but its upper bits are cleared so that the offset value
does not exceed 16-hits.

CALL r/ mi6 and CALL r/ nB2 specify aregister or memory location from which
the absolute segment offset for the procedure is fetched.

In real address or virtual 8086 mode, the long pointer provides 16-bits for the CS
register and 32- or 16-bits for the

Far callsarethose with pt r 16: 32, pt r 16: 16, mi6: 32, and nl6: 16 operands.
CALL pt r 16: 32 uses a 6-byte operand as along pointer to the procedure; CALL
ptr16: 16 uses a4-byte operand. CALL m16: 32 and CALL n16: 16 fetch thelong
pointer from the specified memory location (indirection).

Chapter 6 Processor Instructions

CALL

EIP register (depending on the operand size attribute). These forms of CALL push
both CS and EIP or |P as areturn address.

In protected mode, CALL pt r 16: 32 and CALL pt r 16: 16 consult the accessrights
(AR) in the descriptor indexed by the selector part of the long pointer. Depending
on the value of AR, CALL will perform one of the following control transfers:

» A far call to the same protection level
* Aninter-protection level far call
* A task switch

Any far call from a 32-bit code segment to a 16-bit code segment should be made
from the first 64K bytes of the 32-bit code segment. CALL' s operand size attribute
isset to 16, so it can save only 16-bits as areturn address offset.

Flags Affected
All flags are affected if atask switch occurs; otherwise, no flags are affected

Exceptions by Mode

Protected

For near indirect calls: #GP(0) for an illegal memory operand effective addressin
the CS, DS, ES, FS, or GS segments; #SS(0) if pushing the return address exceeds
the bounds of the stack segment; #GP(0) if the indirect offset obtained is beyond
the code segment limits; #PF(fault-code) for a page fault

For near direct calls: #GP(0) if procedure location is beyond the code segment
limits; #SS(0) if pushing the return address exceeds the bounds of the stack
segment; #PF(fault-code) for a page fault

For far calls: #GP, #NP, #SS, and #TS, as indicated in the Operation section

Real Address

Interrupt 13 if any part of the operand would be outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 251

CBW/CWDE

CBW/CWDE convert Byte to Word/Convert Word to Dword

Opcode Instruction Clocks Description

98 CBW 3 AX :=sign-extend of AL
98 CWDE 3 EAX :=sign-extend of AX
Operation

I F OperandSize = 16 (*instruction = CBW) THEN
AX : = SignExtend(AL);

ELSE (*OperandSi ze = 32, instruction = CW\DE*)
EAX : = Si gnExt end(AX);

Discussion

CBWoconverts the signed byte in AL to asigned word in AX by extending the most
significant bit of AL (the sign bit) into all of the bits of AH. CWDE converts the
signed word in AX to adword in EAX. Note that CWDE is not a variant of CWD.
CWD uses DX:AX, rather than EAX, as a destination.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

252 Chapter 6 Processor Instructions

CLC

CLC clear Carry Flag

Opcode Instruction Clocks Description
F8 CLC 2 Clear carry flag
Operation
CF := 0;
Discussion

CLC clearsthe carry flag. It does not affect other flags or registers.

Flags Affected
CF=0

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM 386 Assembly L anguage Reference Chapter 6 253

CLD

CLD clear Direction Flag

Opcode Instruction Clocks Description
FC CLD 2 Clear direction flag
Operation
DF : =0;
Discussion

CLD clearsthe direction flag. After CLD executes, string operations will increment
the index registers (E)SI and/or (E)DI. CLD does not affect other flags or registers.

Flags Affected
DF=0

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

254 Chapter 6 Processor Instructions

CLI

CLI clear Interrupt Flag

Opcode Instruction Clocks Description

FA CLI 3 Clear interrupt flag; interrupts disabled
Operation
IF CPL > | OPL THEN
#GP(0) ;
ELSE
IF (*interrupt flag*) := 0;
Discussion

CLI clearstheinterrupt flag if the current privilege level is at |east as privileged as
I OPL. (I OPL specifiesthe least privileged level at which I/O can be performed.)

After CLI executes, external interrupts are not recognized until the interrupt flag is
set. CLI affects no other flags.

Flags Affected
IF=0

Exceptions by Mode

Protected

#GP(0) if the current privilege level is greater (has less privilege) than IOPL in the
flags register.

Real Address

None

Virtual 8086
#GP(0) as for Protected Mode

ASM 386 Assembly L anguage Reference Chapter 6 255

CLTS

CLTS clear Task Switched Flagin CRO

Opcode Instruction Clocks Description
OF 06 CLTS 5 Clear task-switched flag
Operation

TS (*Flag in CRO*) := O;

Discussion

CLTS clears the task-switched (TS) flag in the machine status word (MSW of
register CRO. The processor sets this flag every time atask switch occurs.

CLTS appears only in operating system software. It isa privileged instruction that
can be executed only at level 0. The TSflag is used to synchronize processor task
switching with numerics coprocessor context switching as follows:

» Every execution of an ESCinstruction istrapped if the TSflag is set.

» Every execution of an (F)WAI T instruction istrapped if both the TS and MP
flags are set.

These cases generate Interrupt 7. |f atask switch occurs after an ESC (numeric)
instruction begins executing, the numerics coprocessor context may need to be
saved before anew ESC instruction can beissued. A fault handler should save the
current context, restore the new task context, and reset the TS flag.

Flags Affected
TS=0(TSin CRO, not the (E)FLAGS register)

Exceptions by Mode

Protected
#GP(0) if CLTS is executed with a current privilege level other than O

Real Address
None (valid in Real Address Modeto allow initialization for Protected Mode)

Virtual 8086
#GP(0)

256 Chapter 6 Processor Instructions

CMC

CMC Complement Carry Flag

Opcode Instruction Clocks Description
F5 CMC 2 Complement carry flag
Operation
CF := NOT CF;
Discussion

CMC changes the carry flag value from 0 to 1 or from 1to 0. It does not affect any
other flags.

Flags Affected
CF as described

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM 386 Assembly L anguage Reference Chapter 6 257

CMP

CMP compare Two Operands

Opcode Instruction Clocks Description

3Cib CMPAL,imm8 2 Compare immediate byte to AL

3D iw CMP AX,imm16 2 Compare immediate word to AX

3Did CMP EAX,imm32 2 Compare immediate dword to EAX

80/7ib CMP r/m8,imm38 2/5 Compare immediate byte to r/m byte

81/7iw CMP r/m16,imm16 2/5 Compare immediate word to r/mword

81/7id CMP r/m32,imm32 2/5 Compare immediate dword to r/m
dword

83/7ib CMP r/m16,imm8 2/5 Compare sign extended immediate byte
to r/mword

83/7ib CMP r/m32,imm8 2/5 Compare sign extended immediate byte
to r/mdword

38/r CMPr/m8,r8 2/5 Compare byte register to r/m byte

39/r CMPr/mil6,r16 2/5 Compare word register to r/mword

39/r CMPr/m32,r32 2/5 Compare dword register to r/m dword

3AIr CMPr8,r/m8 2/6 Compare r/m byte to byte register

3B /r CMPr16,r/ml6 2/6 Compare r/mword to word register

3B /r CMPr32,r/m32 2/6 Compare r/m dword to dword register

Operation

(*CWP's purpose is to set the flags*)

IF (RightSrc is byte) AND (LeftSrc is word or dword) THEN
LeftSrc - SignExtend(Ri ghtSrc);

ELSE
LeftSrc - RightSrc;

258 Chapter 6 Processor Instructions

CMP

Discussion

CMP subtracts the second operand from the first and sets the flags accordingly. If
an operand greater than one byte is compared to an immediate byte, the byte value
isfirst sign-extended. CMP does not store the result of its non-destructive
subtraction. CVP is used in conjunction with conditional jumps and the SETcc
instructions. (Seethe Jcc instructions for alist of signed and unsigned flag tests
provided.)

Flags Affected

OF, SF, ZF, AF, PF, and CF as described in Appendix A
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 259

CMPS/CMPSB/CMPSW/CMPSD

CMPS/CMPSB/CMPSW/CMPSD Compare String Operands

Opcode Instruction Clocks Description
A6 CMPSm8,m8 10 Compare bytes ES:[(E)DI] (second operand)
with [(E)SI] (first operand)
A7 CMPS 10 Compare words ES:[(E)DI] (second operand)
m16,m16 with [(E)SI] (first operand)
A7 CMPS 10 Compare dwords ES:[(E)DI] (second operand)
m32,m32 with [(E)SI] (first operand)
A6 CMPSB 10 Compare bytes ES;[(E)DI] with DS: [(E)SI]
A7 CMPSW 10 Compare words ES:[(E)DI] with DS: [(E)SI]
A7 CMPSD 10 Compare dwords ES:[(E)DI] with DS:[(E)SI]
Operation
IF (instruction = CMPSD) OR (instruction has dword operands)
THEN
OperandSi ze = 32; (*Assenbl er action*)
ELSE

Oper andSi ze = 16;
I F AddressSi ze = 16 THEN
Use SI for Srclndex and DI for Destlndex;
ELSE (*AddressSi ze = 32*)
Use ESI for Srclndex and EDI for Destlndex;
I F byte type instruction THEN
[Srclndex] - [Destlndex]; (*low byte conparison in words*)
IF DF = O THEN IncDec := 1 ELSE IncDec := -1;
ELSE
[Srclndex] - [Destlndex]; (*conparison*)
I F OperandSi ze = 16 THEN
IF DF = O THEN IncDec := 2 ELSE IncDec := -2;
ELSE (*OperandSi ze = 32*)
IF DF = 0 THEN I ncDec :
Srclndex := Srclndex + IncDec;
Dest I ndex := Destlndex + IncDec;

4 ELSE IncDec := -4;

260 Chapter 6 Processor Instructions

CMPS/CMPSB/CMPSW/CMPSD

Discussion

CMPS compares the byte, word, or dword pointed to by the source index register
with the byte, word, or dword pointed to by the destination index register. CVPS
does the comparison by subtracting the destination operand from the source
operand. CVPS does not store the result of its subtraction; it sets the flags.

If the address size attribute of this instruction is 16-bits, CMPS uses S| and DI for
source and destination index registers; otherwise, it uses ES| and EDI. Load the
correct index values into the appropriate registers before executing CVPS. The
(E)Sl) and (E)DI contents determine addresses for compared memory values.

The direction of subtraction for CMPS is[SI] - [DI] or [ESI] - [EDI]. The left
operand ((E)SI) isthe source, and the right operand ((E)DI) is the destination.
CMPS reverses ASM 386's conventional operand ordering: eft-to-right is usually
destination-source.

The CMPS operands determine whether bytes, words, or dwords are compared. The
segment addressability of the first operand (Sl or ESI) determines whether a
segment override byte is produced or whether the default segment register DSis
used. The second operand (DI or EDI) must be addressable from the ES register;
no segment override is possible.

After the comparison, both the source index and destination index registers are
automatically advanced. If the direction flag is 0 (CLD was executed), the registers
increment; if the direction flag is 1 (STD was executed), the registers decrement.
The registers increment or decrement by 1 if abyteis compared, by 2 if aword is
compared, or by 4 if adword is compared.

CMPSB, CMPSW and CMPSD are synonyms for the byte, word, and dword CMPS
instructions. They are simpler, but they do not provide type checking, nor do they
allow the (E)SI operand to override the DS segment.

CMPS can be preceded by the REPE or REPNE prefix for block comparison of (E)CX
bytes, words, or dwords. See the REP reference page for details about this
operation.

Flags Affected
OF, SF, ZF, AF, PF, and CF as described in Appendix A

ASM 386 Assembly L anguage Reference Chapter 6 261

CMPS/CMPSB/CMPSW/CMPSD

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

262 Chapter 6 Processor Instructions

CMPXCHG

CMPXCHG Compare Exchange (not available on Intel 386 or 376 processors)

Opcode Instruction Clocks Description
OF A6 /r CMPXCHG r/m8,r8 — Compare AL with r/m8; if equal,
move r8 to r/m8; if not equal, move
r/mgto AL
OF A7 Ir CMPXCHG r/m16,r16 — Compare AX with r/m16; if equal,
move r16 to r/ml6; if not equal, move
r/ml6to AX
OF A7 Ir CMPXCHG r/m32,r32 — Compare EAX with r/m32; if equal,
move r32 to r/m32; if not equal, move
r/m32 to EAX
Operation
| F OperandSize = 8 (*r/n8, r8, AL*) THEN
tenp :=r/ns;
IF AL = tenp THEN
r/n8 := r8;
ELSE
r/n8 := tenp;
AL : = tenp;
I F OperandSize = 16 (*r/nl6, rl1l6, AX*) THEN
tenp :=r/ni6;
IF AX = tenp THEN
r/nm6 :=r16;
ELSE
r/nm6 := tenp;
AX 1= tenp;
I F OperandSi ze = 32 (*r/nB82, r32, EAX*) THEN
tenp :=r/nB2;
| F EAX = tenp THEN
r/n82 :=r32;
ELSE
r/n82 := tenp;
EAX : = tenp;

ASM 386 Assembly L anguage Reference

Chapter 6 263

CMPXCHG

Discussion

CMPXCHG compares the contents of AL, AX, or EAX with the contents of the first
operand and sets the flags accordingly. If the comparison is equal, the second
operand is copied into the first; if the comparison is not equal, the first operand is
copied into AL, AX, or EAX.

The LOCK prefix isonly valid for the forms of CMPXCHG which involve memory
operands.

Flags Affected
OF, SF, ZF, AF, PF, and CF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

264 Chapter 6 Processor Instructions

CWD/CDQ

CWD/ CDQ Convert Word to Dword/Convert Dword to Qword

Opcode Instruction Clocks Description

99 CwWD 2 DX:AX :=sign-extend of AX
99 CDQ 2 EDX:EAX :=sign-extend of EAX
Operation

IF Operand Size = 16 (*CWD instruction*) THEN
IF AX < 0 THEN
DX : = OFFFFH,
ELSE
DX := 0;
ELSE (*OperandSi ze = 32, CDQ instruction*)
| F EAX < 0 THEN
EDX : = OFFFFFFFFH,;
ELSE
EDX : = O;

Discussion

CWD converts the signed word in AX to asigned dword in DX:AX by extending the
most significant bit of AX into all the bits of DX. CDQ converts the signed dword
in EAX to asigned qword in the register pair EDX:EAX by extending the most
significant bit of EAX (the sign bit) into all the bits of EDX.

Note that CWDE is not a variant of CWD. CWDE uses EAX as a destination, rather
than (E)DX:(E)AX.

Flags Affected

None
Exceptions by Mode

Protected

None

ASM 386 Assembly L anguage Reference Chapter 6 265

CWD/CDQ

Real Address

None

Virtual 8086

None

266 Chapter 6 Processor Instructions

DAA

DAA Decima Adjust AL after Addition

Opcode Instruction Clocks Description
27 DAA 4 Decimal adjust AL after addition
Operation
IF ((AL AND OFH) > 9) OR (AF = 1) THEN
AL := AL + 6;
AF = 1;
ELSE
AF : = 0;
IF (AL > 9FH) OR (CF = 1) THEN
AL := AL + 60H;
CF := 1;
ELSE
CF :=0;
Discussion

Code DAA only after an ADD instruction that leaves a 2-BCD-digit byte result in the
AL register. The ADD operands should consist of 2 packed BCD digits. The DAA
instruction adjusts AL to contain the correct 2-digit packed decimal result.

Flags Affected

AF and CF as described in the Operation section; SF, ZF, and PF, as described in
Appendix A

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM 386 Assembly L anguage Reference Chapter 6 267

DAS

DAS Decimal Adjust AL after Subtraction

Opcode Instruction Clocks Description
2F DAS 4 Decimal adjust AL after subtraction
Operation

IF (AL AND OFH > 9 OR AF = 1 THEN
AL := AL - 6;

m >
— T
[92]
. @
I
=

'n
e

L > 9FH OR (CF = 1) THEN
L - 60H

> - >
=
" ||;-||

}EQ]
0
. éa.
e k2

Discussion

Code DAS only after a subtraction instruction that |eaves a 2-BCD-digit byte result
inthe AL register. The operands should consist of 2 packed BCD digits. DAS
adjusts AL to contain the correct 2-digit packed decimal result.

Flags Affected

AF and CF as described in the Operation section; SF, ZF, and PF as described in
Appendix A

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

268 Chapter 6 Processor Instructions

DEC

DEC Decrement by 1

Opcode Instruction Clocks Description

FE/1 DEC r/m8 2/6 Decrement r/m byte by 1

FF/1 DEC r/m16 2/6 Decrement r/mword by 1
FF/1 DEC r/m32 2/6 Decrement r/m dword by 1
48+rw DECr16 2 Decrement word register by 1
48+rd DECr32 2 Decrement dword register by 1
Operation

Dest := Dest - 1;
Discussion

DEC subtracts 1 from the operand. DEC does not change the carry flag. (Usethe
SUB instruction with an immediate operand of 1 to affect the carry flag.)

Flags Affected
OF, SF, ZF, AF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 269

DIV

DIV unsigned Divide

Opcode Instruction Clocks Description

F6 /6 DIV r/m8 14/17 Unsigned divide AX by r/m byte (AL = Quo,
AH = Rem)

F7/6 DIV r/m16 22/25 Unsigned divide DX:AX by r/mword
(AX = Quo, DX = Rem)

F7/6 DIV r/m32 38/41 Unsigned divide EDX:EAX by r/m dword

(EAX = Quo, EDX = Rem)

Operation

(*Divisions are unsigned. The only operand is the divisor;
t he dividend, quotient, and remai nder use inplicit
registers.*)
IFr/m= 0 THEN
Interrupt O;
tenp := dividend / (r/m;
IF tenp does not fit in quotient THEN
Interrupt O;
ELSE
quotient := tenp;
remai nder := dividend MOD (r/nm;

Discussion

DI V performs an unsigned division. The dividend isimplicit; DI V's single operand
isthe divisor. The remainder is aways less than the divisor.

The divisor, dividend, quotient, and remainder locations are summarized as

follows:
Table6-17. Operandsand Implicit Destinationsfor DIV
Size Divisor Dividend Quotient Remainder
byte r’/m8 AX AL AH
word r/m16 DX:AX AX DX
dword r/m32 EDX:EAX EAX EDX

Flags Affected
OF, SF, ZF, AR, PF, and CF are undefined

270 Chapter 6 Processor Instructions

DIV

Exceptions by Mode

Protected

Interrupt O if the quotient istoo large to fit in the destination register (AL or AX),
or if the divisor is 0; #GP(0) for an illegal memory operand effective addressin the
CS, DS, ES, FS, or GS segments; #SS(0) for an illegal addressin the SS segment;
#PF(fault-code) for a page fault

Real Address

Interrupt O if the quotient istoo large to fit in the destination register (AL or AX),
or if the divisor is O; Interrupt 13 if any part of the operand would lie outside the
effective address space from 0 to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 271

ENTER

ENTER Make Stack Frame for Procedure Parameters

Opcode Instruction Clocks Description
C8iw00 ENTERimm16,0 10 Make procedure stack frame
C8iw01 ENTERimmi16,1 12 Make stack frame for nested
procedure
C8iwib ENTER imm16, 15+4(n-1) Make stack frame for nested
imm8 procedure
Operation
level := level MDD 32; (*level is rightnost paraneter*)

I F stack segment is USE = 32 THEN
St ackAddr Si ze : = 32; (*Assenbl er action*)

Push(EBP) ;
frame_pointer := ESP;
ELSE
St ackAddr Si ze : = 16;
Push(BP) ;
frame_pointer := SP;
IF level > 0 THEN
FORi :=1 TO (level - 1) DO
I F StackAddr Si ze = 16 THEN
Push[BP] ;
BP := BP - 2;
ELSE (*StackAddr Si ze = 32%)
Push[EBP] ;

EBP : = EBP - 4;
ENDFOR;
ENDI F; (*level > 0%*)
| F StackAddr Si ze = 16 THEN
BP : = frame_pointer;
SP := SP - first_operand;
ELSE
EBP : = frame_pointer;
ESP : = ESP - ZeroExtend(first_operand);

272 Chapter 6 Processor Instructions

ENTER

Discussion

ENTER creates the stack frame required by most block-structured high-level
languages. The first operand specifies the number of bytes of dynamic storage
allocated on the stack for the routine being entered. The second operand gives the
lexical nesting level (0-31) of the routine within the high-level source code. It
determines the number of stack frame pointers copied into the new stack frame
from the preceding frame.

If the stack size attribute is 16-bits, the processor uses BP as the frame pointer and
SP as the stack pointer. |If the stack size attribute is 32-bits, the processor uses EBP
for the frame pointer and ESP for the stack pointer.

ENTER pushes the frame pointer (BP or EBP). ENTER copies the frame pointer
addresses for enclosing callers frames, if any; it then sets the frame pointer to the
current stack pointer value and subtracts the first operand from the stack pointer.

For example, a procedure with 12 bytes of local variables would have an ENTER
12,0 instruction at its entry point and a LEAVE instruction before every RET. The
12 local bytes would be addressed as negative offsets from (E)BP.

Flags Affected

None
Exceptions by Mode

Protected

#SS(0) if SP or ESP would exceed the stack limit at any point during instruction
execution; #PF(fault-code) for a page fault

Real Address

None

Virtual 8086

None

ASM 386 Assembly L anguage Reference Chapter 6 273

HLT

HLT Hait

Opcode Instruction Clocks Description
F4 HLT 5 Halt
Operation

Enter Halt state;

Discussion

HLT stopsinstruction execution and places the processor in a Halt state. An
enabled interrupt, NMI, or a hardware RESET# will resume execution. If an
interrupt or NMI is used to resume execution after HLT, the saved CS:IP (or
CS.EIP) vaue points to the instruction following HLT.

Flags Affected

None
Exceptions by Mode

Protected
HLT isaprivileged instruction: #GP(0) if the current privilege level is not 0

Real Address

None

Virtual 8086
Same as Protected Mode

274 Chapter 6 Processor Instructions

IDIV

IDIV signed Divide

Opcode Instruction Clocks Description

F6 /7 IDIVr/m8 19 Signed divide AX by r/m byte(AL=Quo,AH=Rem)

F7 17 IDIV r/ml6 27 Signed divide DX:AX by r/m
word(AX=Quo,DX=Rem)

F717 IDIV r/m32 43 Signed divide EDX:EAX by r/m

dword(EAX=Quo,EDX=Rem)

Operation

(*The only operand is the divisor; the dividend, quotient,
and remai nder use inplicit registers.*)
IF r/m= 0 THEN
Interrupt O;
ELSE
tenmp := dividend / (r/m;
IF tenp does not fit in quotient register THEN
I nterrupt O;
ELSE
quotient := tenp;
remai nder := dividend MDD (r/m;

Discussion

I DI V performs asigned division. The dividend, quotient, and remainder are
implicitly allocated to fixed registers. Only the divisor is given as an explicit r/m
operand. Thetype of the divisor (size) determines which instructions and registers
to use asfollows:

Table 6-18. Operandsand Implicit Destinationsfor IDIV

Size Divisor Dividend Quotient Remainder
byte r’/m8 AX AL AH

word r/m16 DX:AX AX DX

dword r/m32 EDX:EAX EAX EDX

ASM 386 Assembly L anguage Reference Chapter 6 275

IDIV

If the resulting quotient istoo large to fit in the destination, or if the divisor is0, an
Interrupt O is generated. Nonintegral quotients are truncated toward 0. The
remainder has the same sign as the dividend, and its absolute value is always less
than the divisor's.
Flags Affected
For dword operands, CF and OF are set (1) if EDX is not the sign extension of
EAX; otherwise, CF = 0 and OF = 0; SF, ZF, AF, and PF are undefined
Exceptions by Mode

Protected

Interrupt O if the quotient istoo large to fit in the implicit destination register, or if
the divisor is 0; #GP (0) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #SS(0) for anillegal address in the SS segment;
#PF(fault-code) for a page fault

Real Address

Interrupt O if the quotient istoo large to fit in the implicit destination register, or if
the divisor is0; Interrupt 13 if any part of the operand would lie outside the address
space from 0 to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

276 Chapter 6 Processor Instructions

IMUL

IMUL signed Multiply

Opcode
F6/5
F71/5
F71/5
OF AF /r

OF AF /r

6B /r ib

6B /r ib

6B /r ib

6B /r ib

69 /r iw

69/rid

69 /r iw

69/rid

Instruction
IMUL r/m8
IMUL r/m16
IMUL r/m32
IMUL r16,r/m16

IMUL r32,r/m32

IMUL r16,r/m16,
imm8

IMUL r32,r/m32,
imm8

IMUL r16,imm8

IMUL r32,imm8

IMUL r16,r/mi6,
IMUL r32,r/m32,
imm32

IMUL r16,imm16

IMUL r32,imm32

Clocks

9-14/12-17
9-22/12-25
9-38/12-41
9-22/12-25

9-38/12-41

9-14/12-17

9-14/12-17

9-14/12-17

9-14/12-17

9-22/12-25

9-38/12-41

9-22/12-25

9-38/12-41

ASM 386 Assembly L anguage Reference

Description

AX:=AL * r/mbyte

DX:AX := AL * r/mword
EDX:EAX := EAX * r/m dword
word register := word register * r/m
word

dword register := dword register * r/m
dword

word register := r/m16 * sign-extended
immediate byte

dword register ;= r/m32 * sign-extended
immediate byte

word register := word register * sign-
extended immediate byte

dword register := dword register * sign-
extended immediate byte

word register :=r/m16 * immediate
word

dword register :=r/m32 * immediate
dword

word register :=r/ml6 * immediate
word

dword register :=r/m32 * immediate
dword

Chapter 6 277

IMUL

|:| Note

The processor uses an early-out multiply algorithm. The actual
number of clocks depends on the position of the most significant
bit in the optimizing multiplier, shown underlined in the table.
The optimization occurs for positive and negative values.
Because of the early-out algorithm, clock counts given are
minimum to maximum. To calculate the actual clocks, use the
following formula:

IFm=0THEN ActualClock := 9;
EL SE Actual Clock := max(ceiling(log, [ml), 3) + 6 clocks;

where misthe optimizing multiplier. Add 3 clocksif the multiplieris
amemory operand.
Operation

result := multiplicand * multiplier;

Discussion

I MUL performs signed multiplication. Some forms of the instruction use implicit
register operands. The operand combinations for al forms of the instruction are
shown in the Description column of the preceding table.

I MUL clears the overflow and carry flags under the following conditions:

Table6-19. When IMUL Clears CF and OF

Operand(s) Condition for Clearing CF and OF
r’/m8 AX = sign-extend AL to 16-bits

r/m16 DX:AX = sign-extend AX to 32-bits
r/m32 EDX:EAX = sign-extend EAX to 64-bits
rl6,r/milé6 Result exactly fits within r16

r32,r/m32 Result exactly fits within r32
r16,r/mi16,imm16 Result exactly fits within r16
r32,r/m32,imm32 Result exactly fits within r32

The | MJUL accumulator forms (I MUL r/ 8, | MUL r/ mL6, or | MUL r/ nB82) yield a
result even if the overflow flag is set because such aresult is twice the size of the
multiplicand and multiplier. Thisislarge enough to handle any possible result.

278 Chapter 6 Processor Instructions

IMUL

Flags Affected
OF and CF as shown in Table 6-19; SF, ZF, AF, and PF are undefined

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 279

IN

IN Input from Port

Opcode Instruction Clocks Description

E4ib IN AL,imm38 12,pm:6T/26'JF Input byte from immediate port
into AL

E5ib IN AX,imm38 12,pm:6T/26'JF Input word from immediate port
into AX

E5ib IN EAX,imm8 12,prr’|:6T/26'JF Input dword from immediate port
into EAX

EC IN AL,DX 13,pme71727% Input byte from port DX into AL

ED IN AX,DX 13,pme71/27+ Input word from port DX into AX

ED IN EAX,DX 13,pm=71/127+ Input dword from port DX into
EAX

T If CPL <= I0PL
f If CPL > IOPL or if in virtual 8086 mode

Operation

IF (PE = 1) AND ((VM = 1) OR (CPL > IOPL)) THEN
(*virtual 8086 npode or protected nmbde with CPL > | OPL*)

I'F NOT | OPerm ssion(Src, width(Src)) THEN #GP(0);
Dest :=[Src]; (*reads fromI/O address space*)

Discussion

I Ntransfers a data byte, word, or dword from the port numbered by the second
operand into the register (AL, AX, or EAX) specified by the first operand. Access
any port from 0 to 65535 by placing the port number in the DX register and using
an | Ninstruction with DX as the second operand. These 1/O instructions can be
shortened by using an 8-bit number of a port in the instruction.

If executed in virtual 8086 mode or in protected mode with CPL greater than | OPL:

* | Ncannot access any given byte unless the I/O permission bit map has a
corresponding clear bit.

See also: [/O permission bit map, Appendix A

* | Nalso cannot access a dword or word unless it can access every bytein the
dword or word.

280 Chapter 6 Processor Instructions

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the current privilege level islarger (has less privilege) than IOPL and any
of the corresponding I/O permission bitsin TSS equals 1

Real Address

None

Virtual 8086
#GP(0) if any of the corresponding 1/0 permission bitsin TSS equals 1

ASM 386 Assembly L anguage Reference Chapter 6 281

INC

INC Increment by 1

Opcode Instruction Clocks Description

FE/O INC r/m3 2/6 Increment r/m byte by 1

FF /0 INC r/m16 2/6 Increment r/mword by 1

FF /0 INC r/m32 2/6 Increment r/m dword by 1

40 + rw INCr16 2 Increment word register by 1
40 +rd INCr32 2 Increment dword register by 1
Operation

Dest := Dest + 1;
Discussion

I NC adds 1 to the operand. It does not change the carry flag. (Use the ADD
instruction with a second operand of 1 to affect the carry flag.)

Flags Affected
OF, SF, ZF, AF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the operand isin a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the address space from 0 to
OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

282 Chapter 6 Processor Instructions

INS/INSB/INSW/INSD

INS/INSB/INSW/INSD Input from Port to String

Opcode Instruction Clocks Description

6C INSm8DX 15pm=9T/20% Input byte from port DX into ES:(E)DI

6D INSmM16,DX 15,pm=9T/20% Input word from port DX into
ES:(E)DI

6D INSmM32,DX 15pm=9T/20% Input dword from port DX into
ES:(E)DI

6C INSB 15,pm=9T/20% Input byte from port DX into ES:(E)DI

6D INSW 15,prr‘|:9T/29'JF Input word from port DX into
ES:(E)DI

6D INSD 15,pr‘r‘|:9Jr/29'JF Input dword from port DX into
ES:(E)DI

T If CPL <= I0PL
f If CPL > IOPL or if in virtual 8086 mode

Operation

| F AddressSi ze = 16 THEN
Use DI for Destlndex;
ELSE (*AddressSi ze = 32*%)
Use EDI for Destlndex;
IF (PE=1) AND ((VW= 1) OR (CPL > IOPL)) THEN
(*virtual 8086 npode or protected nmbde with CPL > | OPL*)
I'F NOT | OPerm ssion(Src, width(Src)) THEN #GP(0);
I F byte type instruction THEN
ES: [Destlndex] := [DX]; (*reads at DX from|/O address space*)
IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE (*read word or dword*)
| F OperandSi ze = 16 THEN

ES: [Dest I ndex] := [DX];

IF DF = 0 THEN I ncDec := 2 ELSE IncDec := -2;
ELSE (*OperandSi ze = 32*)

ES: [Dest I ndex] := [DX];

IF DF = 0 THEN I ncDec := 4 ELSE IncDec := -4;

Dest | ndex : = Destlndex + |ncDec;

ASM 386 Assembly L anguage Reference Chapter 6 283

INS/INSB/INSW/INSD

Discussion

I NS transfers data from the port numbered by the DX register to the memory byte,
word, or dword at ES:Destinationlndex. The memory operand must be addressable
from ES; no segment overrideis possible. The destinationis DI if the address size
attribute of the instruction is 16-bits, or EDI if the address size attribute is 32-bits.

I NS does not allow the specification of the port number as an immediate value.
The port must be addressed through the DX register. Load the correct value into
DX before executing the I NS instruction.

The destination address is determined by the contents of the (E)DI register (not by
the first operand to INS). The purpose of the operand isto validate ES segment
addressability and to determine the data type (byte, word, or dword).

After the transfer, (E)DI advances automatically. If the direction flagis0 (CLD
was executed), (E)DI increments; if the direction flag is 1 (STD was executed),
(E)DI decrements. (E)DI increments or decrements by 1 if abyteisinput, by 2 if a
word isinput, or by 4 if adword isinput.

I NSB, | NSwand | NSD are synonyms of the byte, word, and dword | NS
instructions. They are simpler, but they provide no type or segment checking.

If executed in virtual 8086 mode or in protected mode with CPL greater than | OPL:

* | NS cannot access any given byte unless the I/O permission bit map has a
corresponding clear bit.

See also: [/O permission bit map, Appendix A

e | NS also cannot access a dword or word unless it can access every bytein the
dword or word.

I NS can be preceded by the REP prefix for block input of (E)CX bytes or words.
See the REP reference page for details of this operation.

Flags Affected

None

Exceptions by Mode

Protected

284

#GP(0) if CPL isnumerically greater than | OPL and any of the corresponding 1/0
permission bitsin TSS equals 1; #GP(0) if the destination isin a nonwritable
segment; #GP(0) for an illegal memory operand effective address in the ES
segment; #PF(fault-code) for a page fault

Chapter 6 Processor Instructions

INS/INSB/INSW/INSD

Real Address

Interrupt 13 if any part of the operand would lie outside the address space from 0 to
OFFFFH

Virtual 8086

#GP(0) if any of the corresponding 1/0 permission bitsin TSS equals 1; #GP(0) for
an illegal memory operand effective address in the ES segment; #PF(fault-code) for
apage fault

ASM 386 Assembly L anguage Reference Chapter 6 285

INT/INTO

INT/INTO Transfer Control to Interrupt Procedure

Opcode Instruction Clocks Description
CcC INT 3 33 Interrupt 3 - trap to debugger
CC INT 3 pm=59 Interrupt 3 - protected mode, same privilege
CcC INT 3 pm=99 Interrupt 3 - protected mode, more privilege
CC INT 3 pm=119 Interrupt 3 - from virtual 8086 mode to
privilege level 0
CC INT 3 pm:224—314T Interrupt 3 - protected mode, viatask gate
CDib INT imm3 37 Interrupt numbered by immediate byte
CDib INT imm8 pm=59 Interrupt - protected mode, same privilege
CDib INT imm8 pm=99 Interrupt - protected mode, more privilege
CDib INT imm8 pm=119 Interrupt - from virtual 8086 mode to
privilege level 0
CDib INT imm8 pm:224—314Jr Interrupt - protected mode, viatask gate
CE INTO Fail:3,pm=3 Interrupt 4 - if overflow flagis 1
Pass:35
CE INTO pm=59 Interrupt 4 - protected mode, same privilege
CE INTO pm=99 Interrupt 4 - protected mode, more privilege
CE INTO pm=119 Interrupt 4 - from virtual 8086 mode to
privilegelevel O
CE INTO pm:224—314T Interrupt 4 - protected mode, viatask gate

T See also: 80386 Programmer's Reference Manual

Operation

(*These operations al so occur for exceptions and external
interrupts*)
IF PE = 0 THEN (*real address node*)
IF interrupt table entry > IDT limt THEN #DF(O0);
ELSE
Push(FLAGS) ;
IF :=0; (*Cear interrupt flag*)
TF := 0; (*Cear trap flag*)
Push(CS);
Push(1 P);
(*no error codes are pushed*)

286

Chapter 6 Processor Instructions

INT/INTO

CS := IDT[interrupt nunber * 4].selector;
IP := IDT[interrupt number * 4].offset;
ELSE
IF VM= 1 THEN
GOTO | NTERRUPT_FROM VI RTUAL_8086_ MODE;
ELSE
GOTO PROTECTED MODE;

PROTECTED_MODE:

IF interrupt vector NOT within IDT table limt THEN
#GP(vect or nunber * 8+2+EXT);

Descriptor AR nust indicate interrupt, trap or task gate
ELSE #GP(vector number * 8+2+EXT);

I F software interrupt (*caused by INT n, INT 3, INTO
BOUND*)

AND gate descriptor DPL < CPL THEN
#GP(vector nunmber * 8+2+EXT);

I F gate NOT PRESENT THEN #NP(vector nunber * 8+2+EXT);

IF trap gate OR interrupt gate THEN
GOTO TRAP_CR | NTERRUPT_GATE;

ELSE
GOTO TASK_GATE;

TRAP_OR | NTERRUPT_GATE:
(*Exam ne CS sel ector and descriptor given in gatedescriptor: *)
IF selector is null THEN #GP(EXT);
IF selector NOT within its descriptor table linmts THEN
#GP(sel ector + EXT);
I F descriptor AR indicates non-code segnent THEN
#GP(sel ector + EXT);
I F segnent NOT PRESENT THEN #NP(sel ector + EXT);
| F code segnent is non-conformng AND DPL < CPL THEN
GOTO | NTERRUPT_TO_MORE_PRI VI LEGED,;
| F code segnment is conform ng OR code segnent DPL=CPL
THEN GOTO | NTERRUPT_TO_SAME_PRI VI LEGE;
ELSE #GP(CS sel ector + EXT);

I NTERRUPT_TO_MORE_PRI VI LEGED:
(*Check selector and descriptor for new stack in currentTSS: *)
I F selector is null THEN #GP(EXT);
I F selector index NOT within descriptor table limts THEN
#TS(SS sel ector + EXT);
I F selector's RPL NOT = DPL of code segnment THEN
#TS(SS sel ector + EXT);

ASM 386 Assembly L anguage Reference Chapter 6 287

INT/INTO

I F stack segment DPL NOT = DPL of code segment THEN
#TS(SS sel ector + EXT);
Descriptor must indicate witable data segnent
ELSE #TS(SS sel ector + EXT);
| F segnent NOT PRESENT THEN #SS(SSsel ect or +EXT);
IF 32-bit gate THEN
New stack nust have room for 24 bytes ELSE #SS(0);
IF interrupt caused by exception with error code THEN
Stack limts nmust allow pushing 2 nore bytes
ELSE #SS(0);
gate_of fset must be within CS segnment boundari es
ELSE #GP(0);
Load new SS and ESP val ues from TSS;
CS:EIP := selector:offset fromgate;
ELSE (*16-bit gate*)
New stack nmust have room for 12 bytes ELSE #SS(0);
I F interrupt caused by exception with error code THEN
Stack limts must allow pushing 2 nore bytes
ELSE #SS(0);
gate_of fset must be within CS segnment boundari es
ELSE #GP(0);
Load new SS and SP val ues from TSS;
CS:IP := selector:offset from gate,;
ENDI FELSE;
Load CS descriptor into CS cache;
Load SS descriptor into SS cache;
IF 32-bit gate THEN
Push(l ong pointer to old stack); (*3 words padded to 4*)
Push(EFLAGS) ;
Push(long pointer to return |ocation);
(*3 words padded to 4*)
ELSE (*16-bit gate*)
Push(long pointer to old stack); (*2 words*)
Push(FLAGS) ;
Push(long pointer to return location); (*2 words*)
ENDI FELSE;
CPL := (*new code segnent's*) DPL;
RPL (*of CS*) := CPL;
Push error code if exception;
IF interrupt gate THEN IF := 0; (*interrupt flag disabl ed*)
TF := 0;
NT := 0;

288 Chapter 6 Processor Instructions

INT/INTO

| NTERRUPT_TO_SAME_PRI VI LECE:
IF 32-bit gate THEN
Current stack limts rmust allow pushing 12 bytes
ELSE #SS(0);
IF interrupt caused by exception with error code THEN
Stack limts must allow pushing 2 nore bytes
ELSE #SS(0);
gate_offset must be within CSlimt ELSE #GP(0);
Push(EFLAGS) ;
Push(l ong pointer to return location); (*3 words pad to 4*)
CS:EIP : = selector:offset fromgate;
ELSE (*16-bit gate*)
Current stack limts nmust allow pushing 6 bytes
ELSE #SS(0);
I F interrupt caused by exception with error code THEN
Stack limts must allow pushing 2 nore bytes
ELSE #SS(0);
gate_offset nmust be in CSlimt ELSE #GP(0);
Push(FLAGS) ;
Push(long pointer to return [ocation); (*2 words*)
CS:IP := selector:offset from gate,;
ENDI FELSE;
Load CS descriptor into CS cache;
RPL (*of CS*) := CPL;
Push error code (*if any*) onto stack;
IF interrupt gate THEN IF := 0; (*clear interrupt flag*)
TF := 0;
NT := 0;
| NTERRUPT_FROM VI RTUAL8086_ MODE:
tenpEFl ags : = EFLAGS;
VM := 0;
TF := 0;
I F service through task gate THEN GOTO TASK_GATE;
ELSE (*service through trap or interrupt gate*)
IF interrupt gate THEN IF := 0; (*Cear interrupt flag*)
tenpSS : = SS;
tenpESP : = ESP;
SS := TSS. SS0; (*Change to level 0 stack segnent*)
ESP : = TSS. ESPO; (*Change to |level 0 stack pointer*)
Push(GS); (*padded to 2 words*)
Push(FS); (*padded to 2 words*)
Push(DS); (*padded to 2 words*)
Push(ES); (*padded to 2 words*)

ASM 386 Assembly L anguage Reference Chapter 6 289

INT/INTO

GS := 0;

FS := 0;

DS := 0;

ES : = 0;

Push(TempSS); (*padded to 2 words*)
Push(TenmpESP) ;

Push(TenpEFI ags) ;

Push(CS); (*padded to 2 words*)

Push(El P);

CS:EIP := selector:offset fromtrap or interrupt gate;
(*starts execution of new routine in protected node*)
TASK_GATE:

(*Exam ne selector to TSS in task gate descriptor: *)

I F TSS sel ector specifies local in |ocal/global bit THEN

#TS(TSS sel ector);

IF index NOT within GDT linmts THEN #TS(TSS sel ector);
Swi tchTasks (*with nesting*) to TSS;

I F interrupt caused by exception with error code THEN
Stack limts must allow pushing 2 nore bytes ELSE SS(0);
Push error code onto stack;

ENDI F;

(BE)IP must be in CSlimt ELSE #GP(0);

Discussion

290

The | NT n instruction gives control to an interrupt procedure via software. The
immediate operand gives the index number (0 to 255) into the interrupt descriptor
table (IDT) for theroutine called. In protected mode, the IDT consists of an array
of 8-byte descriptors; each descriptor must indicate an interrupt, trap, or task gate.
In real address mode, the IDT isan array of 4 byte-long pointers. In protected and
real address modes, the base linear address of the IDT is defined by the contents of
the IDTR.

The I NTO conditional software instruction isidentical to the | NT n instruction
except that the interrupt number isimplicitly 4, and the interrupt is made only if the
processor overflow flag is set.

Thefirst 32 interrupts are reserved by Intel for system use. Some of these
interrupts are used for internally generated exceptions.

I NT n behaves like afar call except that the flags register is pushed onto the stack
before the return address. Interrupt proceduresreturn viathe | RET/ | RETD
instruction, which pops the flags and return address from the stack.

Chapter 6 Processor Instructions

INT/INTO

In real address mode, | NT n pushes the flags, CS, and the return | P onto the stack
and then jumps to the long pointer indexed by the interrupt number.

Flags Affected

None
Exceptions by Mode

Protected
#GP, #NP, #SS, and #T'S as described in the Operation section

Real Address

None; if SPor ESP =1, 3, or 5 before executing | NT or | NTO, the processor will
shut down due to insufficient stack space

Virtual 8086

For | NT n only, #GP(0) if | OPL islessthan 3 to allow emulation; Interrupt 3
(OCCH) generates Interrupt 3; | NTO generates Interrupt 4 if the overflow flag
equalsl

ASM 386 Assembly L anguage Reference Chapter 6 291

INVD

INVD Invalidate Data Cache (not available on Intel 386 or 376 processors)

Opcode Instruction Clocks Description
OF 08 INVD — Destructively flush data cache
Operation

FOR ALL CacheEntries DO
Bi t [CacheEntry, Valid] := O;

Discussion

I NVD destructively invalidates (flushes) the data cache of all entries. The entries
are flushed by resetting their valid bits. Thisinstruction takes no operand.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

292 Chapter 6 Processor Instructions

INVLPG

INVLPG Invaidate Paging Cache Entry
(not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description
OF 01/7 INVLPG m — Invalidate paging cache entry for m
Operation

Vi rtual Addr := Segnment + Addr(m;

I F Virtual Addr I N Pagi ngCache THEN

Bi t [PageCacheEntry, 0] := O;
Discussion

I NVLPG invalidates (flushes) a page entry from the 486 processor's on-chip paging
cache (translation lookaside buffer). The full virtual address of mis generated. The
paging cache is then checked to seeif the corresponding entry for that virtual
address existsin the cache. If so, the entry is flushed by resetting the Present bit
(bit 0).

Only memory operands are valid with this instruction.

Flags Affected

None
Exceptions by Mode

Protected
#UD if aregister operand is used.

Real Address

None

Virtual 8086

None

ASM 386 Assembly L anguage Reference Chapter 6 293

IRET/IRETD

IRET/IRETD Interrupt Return

Opcode Instruction Clocks Description

CF IRET 22,pm=38 16-bit interrupt return (far return, pop
flags)

CF IRET pm=382 16-bit interrupt return to lesser privilege

CF IRET pm=214-275Jr 16-bit interrupt return different task
(NT=1)

CF IRETD 22, pm=38 32-bit interrupt return (far return, pop
flags)

CF IRETD pm=60 32-bit interrupt return to virtual 8086
mode

CF IRETD pm=82 32-bit interrupt return to lesser privilege

CF IRETD pm=214-275Jr 32-bit interrupt return, different task
(NT=1)

T See also: 80386 Programmer's Reference Manual

Operation

IF PE = 0 THEN (*real address node*)
I F OperandSi ze = 32 (*instruction | RETD*) THEN
EIP := Pop(); (*pop stack top into ElIP¥)
ELSE (*instruction | RET*)
IP = Pop();
CS := Pop();
I F OperandSi ze = 32 THEN
EFLAGS : = Pop();
ELSE (*OperandSi ze = 16*)
FLAGS : = Pop();
ELSE (*protected node*)
IF VM = 1 THEN #GP(0);
IF NT = 1 THEN
GOTO TASK_RETURN,
ELSE
IF VM=1 (*in flags inage on stack*) THEN
GOTO STACK_RETURN_TO VI RTUAL8086;
ELSE
GOTO STACK_RETURN,
TASK_RETURN:
(*Exam ne back |ink selector in TSS addressed by currentTR *)

294 Chapter 6 Processor Instructions

IRET/IRETD

Must specify global in local/global bit ELSE
#TS(new TSS sel ector);
Index nust be within GDT limts ELSE #TS(new TSS sel ector);
AR nust specify TSS ELSE #TS(new TSS sel ector);
New TSS nust be busy ELSE #TS(new TSS sel ector);
I F TSS NOT PRESENT THEN #NP(new TSS sel ector);
(*END check back link selector*)
Swi t chTasks wi thout nesting to TSS
speci fied by back |ink selector;
Mark task just abandoned as NOT busy;
(E)IP must be within code segnment |limt ELSE #GP(0);

STACK_RETURN_TO VI RTUAL8086:
EFLAGS := SS:[ESP + 8]; (*sets VMin interrupted routine*)
EIP := Pop();

CS := Pop(); (*behaves as in 8086, due to VM= 1%)
throwaway := Pop(); (*Pop EFLAGS al ready read*)

ES := Pop(); (*pop 2 words; throw away high-order word*)
DS := Pop(); (*pop 2 words; throw away high-order word*)
FS := Pop(); (*pop 2 words; throw away high-order word*)
GS := Pop(); (*pop 2 words; throw away hi gh-order word*)

tenmpESP : = Pop();
tenpSsS : = Pop();
SS: ESP : = t enpSS: t enpESP;
(*resume execution in virtual 8086 npde*)

STACK_RETURN:
| F OperandSi ze = 32 THEN
Fourth word on stack nust be within stack limts ELSE #SS(0);
ELSE (*OperandSi ze = 16*)
Second word on stack must be within stack linmts ELSE #SS(0);
IF return CS selector RPL < CPL THEN #GP(return selector);
IF return selector RPL = CPL THEN
GOTO RETURN_SAME_PRI VI LEGE;
ELSE
GOTO RETURN_LESS PRI VI LEGED,
RETURN_SAME_PRI VI LECE:
| F OperandSi ze = 32 THEN
Top 12 bytes on stack nmust be within limts ELSE #SS(0);
Return CS selector (*at ESP+4*) nust be non-null ELSE
#GP(0) ;
ELSE (*OperandSi ze = 16*)
Top 6 bytes on stack must be within limts ELSE #SS(0);

ASM 386 Assembly L anguage Reference Chapter 6 295

IRET/IRETD

Return CS selector (*at SP+2*) nust be non-null ELSE
#GP(0) ;
ENDI FELSE;
I F selector index NOT within its descriptor table limts THEN
#GP(return selector);
AR nust indicate code segnment ELSE #GP(return selector);
I F non-conform ng AND code segnent DPL NOT = CPL THEN
#GP(return selector);
I F conform ng AND code segnent DPL > CPL THEN
#GP(return selector);
I F segnent NOT PRESENT THEN #NP(return sel ector);
return_of fset must be within code segment boundaries ELSE
#GP(0) ;
| F OperandSi ze = 32 THEN
Load CS: ElIP from st ack;
Load CS cache with new code segnent descriptor;
Load EFLAGS with third dword from st ack;
(E)SP := (E)SP + 12,
ELSE (*OperandSi ze = 16*)
Load CS: I P from st ack;
Load CS cache with new code segnent descriptor;
Load FLAGS with third word on stack;
(E)SP := (E)SP + 6;

RETURN_LESS PRI VI LEGED:
| F OperandSi ze = 32 THEN
Top 20 bytes on stack nmust be within limts ELSE #SS(0);
ELSE (*OperandSize = 16*)
Top 10 bytes on stack nmust be within limts ELSE #SS(0);
(*Exam ne return CS selector and associated descriptor: *)
IF selector is null THEN #GP(O0);
I F selector index NOT within its descriptor table limts THEN
#GP(return selector);
I F AR does NOT indicate code segment THEN
#GP(return selector);
I F non-confornm ng AND
code segnent DPL NOT = CS sel ector RPL THEN
#GP(return selector);
I F conform ng AND code segnent DPL < = CPL THEN
#GP(return selector);
I F segnent NOT PRESENT THEN #NP(return sel ector);
(*END check return CS selector and associ ated descri ptor*)
(*Exam ne return SS sel ector and associ ated descriptor: *)
I F selector is null THEN #GP(0);

296 Chapter 6 Processor Instructions

IRET/IRETD

IF selector index NOT within its descriptor table limts THEN
#GP(SS sel ector);
I F selector RPL NOT = RPL of return CS selector THEN
#GP(SS sel ector);
I F AR does NOT indicate witable data segment THEN
#GP(SS sel ector);
I F stack segment DPL NOT = RPL of return CS sel ector
THEN #GP(SS sel ector);
I F SS NOT PRESENT THEN #NP(SS sel ector);
(*END check return SS sel ector and associ ated descriptor*)
return_of fset nmust be in code segnment ELSE#GP(0);
I F OperandSi ze = 32 THEN
Load CS: ElI P from st ack;
Load EFLAGS with values at (ESP + 8);
ELSE (*OperandSi ze = 16*)
Load CS: I P from st ack;
Load FLAGS with val ues at (SP+4);
ENDI FELSE;
Load SS: (E)SP from st ack;
CPL := RPL of CS return selector;
Load CS cache with CS descriptor;
Load SS cache with SS descriptor;
FOR each of ES, FS, GS, and DS DO
IF current register value NOT valid for interrupted routine
THEN zero register and clear valid flag;
(*To be valid, register setting nust satisfy:
Sel ector index is within its descriptor table limts;
AR indicates data or readabl e code segment;
I F segnent is data or non-conforning code THEN
DPL rmust be >= CPL or DPL nust be >= RPL;*)
ENDFOR;

Discussion

| RETDisa32-bit and | RET isa 16-bit return from an interrupt routine, whatever
the USE attribute (32- or 16-bit) of the containing segment. In rea address mode,

I RET(D) popsthe (E)IP, CS, and the flags register from the stack and resumes the
interrupted routine. In protected mode, the action of | RET(D) depends on the
setting of the nested task flag (NT) bit in the flag register. When popping the new
flag image from the stack, the | OPL bitsin the flag register are changed only when
CPL equalsO.

ASM 386 Assembly L anguage Reference Chapter 6 297

IRET/IRETD

If NT equals O, | RET(D) returns from an interrupt procedure without a task switch.
The code that resumes execution after | RET(D) must be equally or less privileged
than the interrupt routine (as indicated by the RPL bits of the CS selector popped
from the stack). If the destination code isless privileged, | RET(D) aso pops (E)SP
and SS from the stack.

If NT equals 1, | RET(D) reverses the operation of the CALL or INT that caused a
task switch. The task executing | RET(D) hasits updated state saved in its task
state segment. If the task is reentered, the code that follows | RET(D) is executed.

Flags Affected
All; the flags register is popped from stack

Exceptions by Mode

Protected
#GP, #NP, #TS, or #SS, asindicated in the preceding Operation section

Real Address
Interrupt 13 if any part of the operand being popped lies beyond address OFFFFH

Virtual 8086
#GP(0) if IOPL islessthan 3 to permit emulation

298 Chapter 6 Processor Instructions

Jcc

JCC Jumpif Condition is Met

Opcode
77cb
73cb
72 cb
76 cb
72 cb
E3 cb
E3 cb
74cb
74cb
7F cb
7D cb
7Ccb
7E cb

76 cb
72 ch
73cb
77ch
73cb
75cb
7TE cb
7Ccb
7D cb
7F cb
71lcb
7B cb
79cb

Instruction
JA rel8
JAErel8
JBrel8
JBE rel8
JCrel8
JCXZ rel8
JECXZ rel8
JErel8

JZ rel8
JGrel8
JGE rel8
JL rel8
JLErel8

JINA rel8
INAE rel8
JINB rel8
JNBE rel8
JINCrel8
JINE rel8
ING rel8
JINGE rel8
JNL rel8
JNLE rel8
JNOrel8
INPrel8
JINSrel8

Clocks
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
9+m,5
9+m,5
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

Description

Jump short if above (CF=0 and ZF=0)

Jump short if above or equal (CF=0)

Jump short if below (CF=1)

Jump short if below or equal (CF=1 or ZF=1)
Jump short if carry (CF=1)

Jump short if CX register isO

Jump short if ECX register is0

Jump short if equal (ZF=1)

Jump short if 0 (ZF=1)

Jump short if greater (ZF=0 and SF=0F)

Jump short if greater or equal (SF=0OF)

Jump short if less (SF NOT = OF)

Jump short if less or equal (ZF=1 and

SF NOT = OF)

Jump short if not above (CF=1 or ZF=1)

Jump short if not above or equal (CF=1)

Jump short if not below (CF=0)

Jump short if not below or equal (CF=0 and ZF=0)
Jump short if not carry (CF=0)

Jump short if not equal (ZF=0)

Jump short if not greater (ZF=1 or SF NOT = OF)
Jump short if not greater or equal (SF NOT = OF)
Jump short if not less (SF=0F)

Jump short if not less or equal (ZF=0 and SF=0F)
Jump short if not overflow (OF=0)

Jump short if not parity (PF=0)

Jump short if not sign (SF=0)

NOTE: The first clock count is for the true condition (branch taken); the second clock count is for the false
condition (branch not taken). rel16/32 indicates that these instructions map to two; one with a 16-bit relative
displacement, the other with a 32-bit relative displacement, depending on the operand size attribute of the
instruction. The assembler does not allow an operand override for relative jumps.

ASM 386 Assembly L anguage Reference Chapter 6 299

Jcc

Opcode Instruction Clocks Description

75cb JINZ rel8 7+m,3 Jump short if not zero (ZF=0)

70cb JOrel8 7+m,3 Jump short if overflow (OF=1)

7A cb JPrel8 7+m,3 Jump short if parity (PF=1)

7A cb JPE rel8 7+m,3 Jump short if parity even (PF=1)

7B cb JPOrel8 7+m,3 Jump short if parity odd (PF=0)

78 cb JSrel8 7+m3 Jump short if sign (SF=1)

74cb JZ rel8 7+m,3 Jump short if zero (ZF = 1)

OF 87 cwicd JA rel16/32 7+m,3 Jump near if above (CF=0 and ZF=0)

OF 83cw/cd JAErel16/32 7+m,3 Jump near if above or equal (CF=0)

OF 82cw/cd JBrel16/32 7+m,3 Jump near if below (CF=1)

OF 86 cw/cd JBErel16/32 7+m,3 Jump near if below or equal (CF=1 or
ZF=1)

OF 82cw/cd JCrel16/32 7+m,3 Jump near if carry (CF=1)

OF 84 cw/cd JErel16/32 7+m,3 Jump near if equal (ZF=1)

OF 84 cwicd JZrel16/32 7+m,3 Jump near if 0 (ZF=1)

OF 8F cw/cd JGrel16/32 7+m,3 Jump near if greater (ZF=0 and SF=0F)

OF 8D cwicd JGE rel16/32 7+m,3 Jump near if greater or equal (SF=OF)

OF 8Ccw/cd JL rel16/32 7+m,3 Jump near if less (SF NOT = OF)

OF 8Ecw/icd JLE rel16/32 7+m,3 Jump near if less or equal (ZF=1 and SF
NOT = OF)

OF 86 cw/cd JINArell6/32 7+m3 Jump near if not above (CF=1 or ZF=1)

OF 82cw/cd JINAErel16/32 7+m,3 Jump near if not above or equal (CF=1)

OF 83 cw/cd JNB rel16/32 7+m,3 Jump near if not below (CF=0)

OF 87 cw/cd JINBErel16/32 7+m,3 Jump near if not below or equal (CF=0 and
ZF=0)

OF 83 cw/cd JINCrel16/32 7+m,3 Jump near if not carry (CF=0)

OF 85cw/cd JINE rel16/32 7+m,3 Jump near if not equal (ZF=0)

OF 8E cw/cd JING rel16/32 7+m,3 Jump near if not greater (ZF=1 or SF NOT
= OF)

OF 8Ccw/cd JINGETrel16/32 7+m3 Jump near if not greater or equal

(SF NOT = OF)

NOTE: The first clock count is for the true condition (branch taken); the second clock count is for the false
condition (branch not taken). rel16/32 indicates that these instructions map to two; one with a 16-bit relative
displacement, the other with a 32-bit relative displacement, depending on the operand size attribute of the
instruction. The assembler does not allow an operand override for relative jumps.

300 Chapter 6 Processor Instructions

Opcode Instruction Clocks Description

OF 8D cw/cd JINL rel16/32 7+m,3 Jump near if not less (SF=OF)

OF 8F cw/cd JINLE rel16/32 7+m,3 Jump near if not less or equal (ZF=0
and SF=OF)

OF 81 cw/cd JNO rel16/32 7+m,3 Jump near if not overflow (OF=0)

OF 8B cw/cd INPrel16/32 7+m,3 Jump near if not parity (PF=0)

OF 89 cw/cd INSrel16/32 7+m,3 Jump near if not sign (SF=0)

OF 85 cwicd INZ rel16/32 7+m,3 Jump near if not zero (ZF=0)

OF 80 cwicd JO rel16/32 7+m,3 Jump near if overflow (OF=1)

OF 8A cw/cd JPrel16/32 7+m,3 Jump near if parity (PF=1)

OF 8A cw/cd JPE rel16/32 7+m,3 Jump near if parity even (PF=1)

OF 8B cw/cd JPO rel16/32 7+m,3 Jump near if parity odd (PF=0)

OF 88 cwicd JSrel16/32 7+m,3 Jump near if sign (SF=1)

OF 84 cwicd JZ rel16/32 7+m,3 Jump near if 0 (ZF=1)

NOTE: The first clock count is for the true condition (branch taken); the second clock count is for the false
condition (branch not taken). rel16/32 indicates that these instructions map to two; one with a 16-bit relative
displacement, the other with a 32-bit relative displacement, depending on the operand size attribute of the
instruction. The assembler does not allow an operand override for relative jumps.

Operation

I F condition THEN
EIP := EIP + SignExtend(rel 8/rel 16/rel 32);
I F OperandSi ze = 16 THEN
ElIP := EI P AND 0000FFFFH,;

ASM 386 Assembly L anguage Reference Chapter 6 301

Jcc

Discussion

Conditional jumps (except JECXZ and JCXZ) test the flags which have been set by
apreviousinstruction. If the given condition istrue, ajump is made to the location
(Iabel) specified as the operand. The conditions for each mnemonic are
parenthesized in the Description column of the preceding table. The terms less and
greater are used for comparisons of signed integers; above and below are used for
unsigned integers.

Instruction coding is most efficient when the target for the conditiona jumpisin
the current code segment and within

-128 to +127 bytes of the next instruction's first byte. The jump can also target a
label in the range:

o -32768to +32767 for aUSEL6 code segment.
o -281t0 (+231-1) for aUSE32 code segment.

When the target for the conditional jump isafar label (in adifferent segment), use
the opposite case of the jump instruction (i.e., JE and JNE), and then access the
target with an unconditional jump to the far label. For example, you cannot code;

JZ FARLABEL
Y ou must instead code:

JNZ BEYOND
BEYOND:
JMP FARLABEL

The assembler provides more than one mnemonic for most of the conditional jump
opcodes because there are severa interpretations for a particular state of the flags.
For example, use JE for ajump when two characters compared in AX are equal.
Or, use JZ (asynonym for JE) for ajump when theresult is O if AX is ANDed with
ahit field mask.

Use J(E)CXZ within a conditional loop. The conditional loop instructions use an
implicit limiting count in the ECX or CX register, and J([E)CXZ tests the contents
of (E)CX for 0. (The other Jcc instructions test the flags.) J([E)CXZ is useful at the
beginning of a conditional loop that terminates with a conditional loop instruction
(such as LOOPNE TARGET_LABEL). J(E)CXZ prohibits entry to such aloop if
(E)CX equals O; otherwise, the loop would execute 32G or 64K times.

Flags Affected

302

None

Chapter 6 Processor Instructions

Jcc

Exceptions by Mode

Protected
#GP(0) if the offset jumped to is beyond the limits of the code segment

Real Address

None

Virtual 8086

None

ASM 386 Assembly L anguage Reference Chapter 6 303

JMP

JMP Jump
Opcode Instruction
EB cb JMPrel8
E9 cw JMPrel16
FF/4 JMP r/m16
EA cd JMP ptrl6:16
EA cd JMP ptrl6:16
EA cd JMP ptrl6:16
EA cd JMP ptrl6:16
FF/5 JMP m16:16
FF/5 JMP m16:16
FF/5 JMP m16:16
FF/5 JMP m16:16
E9 cd JMPrel32
FF/4 JMP r/m32
EA cp JMP ptr16:32
EA cp JMP ptr16:32
EA cp JMP ptr16:32
EA cp JMP ptr16:32
FF/5 JMP m16:32
FF/5 JMP m16:32
FF/5 JMP m16:32
FF/5 JMP m16:32

Clocks
7+m
7+m

7+m/10+m
12+m,pm=27+m

pm=45+m
pm=218-3121
pm=218-3121
43+m,pm=31+m

pm=49+m
pm=223-317T
pm=223-317T
7+m

7+m,10+m
12+m,pm=27+m

pm=45+m
pm=218-3127
pm=218-312T
43+m,pm=31+m

pm=49+m
pm=223-317T
pm=223-317T

T See also: 80386 Programmer's Reference Manual

304

Chapter 6

Description
Jump short

Jump near, displacement relative to
next instruction

Jump near indirect

Jump intersegment, 4-byte
immediate address

Jump to call gate, same privilege
Jump viatask state segment
Jump viatask gate

Jump r/m16:16 indirect and
intersegment

Jump to call gate, same privilege
Jump viatask state segment
Jump viatask gate

Jump near, displacement relative to
next instruction

Jump near, indirect

Jump intersegment, 6-byte
immediate address

Jump to call gate, same privilege
Jump viatask state segment
Jump viatask gate

Jump intersegment, address at r/m
dword

Jump to call gate, same privilege
Jump viatask state segment
Jump viatask gate

Processor | nstructions

JMP

Operation

IF instruction = relative JVMP (*rel 8/ 16/ 32operand*) THEN
EIP := EIP +rel 816/ 32;
| F protected node AND destination address > its segnent limt
THEN #GP(0);
| F OperandSi ze = 16 THEN
EIP := EI P AND 0000FFFFH,
ENDI F; (*relative JMP*)
IF instruction = near indirect JWP (*r/ml6/nB2operand*) THEN
| F OperandSi ze = 16 THEN
EIP := [r/m6] AND O000FFFFH;
ELSE (*OperandSi ze = 32*)
EIP :=[r/nmB2];
ENDI F; (*near indirect JMP*)
IF (PE=0 OR(PE=1AND VM= 1)) (*real address or virtual 8086
mode*) AND instruction = far JMP(*ni/ptr16:16/32 operand*) THEN
| F operand =ml6: 16 ORmL6: 32 (*indirect*) THEN
| F OperandSi ze = 16 THEN
CS:IP := [nl6: 16];
EIP : = EI P AND 0000FFFFH; (*clear upper 16-bits*)
ELSE (*OperandSi ze = 32*)
CS EIP :=[nm6:32];
ENDI F; (*ml6: 16 or ml6: 32 indirect JMP*)
| F operand =ptrl16:16 or ptr16:32(*absol ute JMP*) THEN
| F OperandSi ze = 16 THEN
CS:IP :=ptri6: 16;
EIP : = EI P AND 0000FFFFH; (*cl ear upper 16-bits*)
ELSE (*OperandSi ze = 32*)
CS EIP :=ptr16: 32,
ENDI F; (*ptrl16:16 or ptri16:32 absol ute JMP*)

IF (PE=1 AND VM = 0) (*protected npde*)
AND instruction = far JMP THEN
| F operand =ml6: 16 ORmL6: 32(*indi rect*) THEN
(*check access of dword effective address*)
IF limt violation THEN #GP(0);
ENDI F; (*check access*)
| F destination selector is null THEN #GP(0);
| F destination selector index NOT within its descriptor table limts
THEN #GP(sel ector);
(*Exam ne AR of destination descriptor: *)
IF invalid AR THEN #GP(sel ector);
ELSE (*depending on AR val ue: *)

ASM 386 Assembly L anguage Reference Chapter 6 305

JMP

GOTO CONFORM NG_CODE_SEGVENT;
GOTO NONCONFORM NG_CODE_SEGVENT;
GOTO CALL_GATE;

GOTO TASK_GATE;

GOTO TASK_STATE_SEGVENT;

CONFORM NG_CODE_SEGVENT:
| F target _segment DPL > CPL or
gate DPL < Max(CPL, RPL) THEN #GP(sel ector);
I F segnent NOT PRESENT THEN #NP(sel ector);
IF target_offset NOT within code segnment linmit THEN #GP(0);
I F OperandSi ze = 32 THEN
Load CS: EIP from destination pointer;
ELSE
Load CS: 1P from destination pointer;
Load CS cache with new segnent descriptor;

NONCONFORM NG_CODE_SEGVENT:
| F gate DPL < Max(CPL, RPL) THEN #GP(sel ector);
| F target _segnent DPL NOT = CPL THEN #GP(sel ector);
I F segnent NOT PRESENT THEN #NP(sel ector);
IF target_offset NOT within code segnent linmit THEN #GP(0);
| F OperandSi ze = 32 THEN
Load CS: EIP from destination pointer;
ELSE
Load CS: 1P fromdestination pointer;
Load CS cache with new segnent descriptor;
RPL (*of CS*) := CPL;
CALL_GATE:
I F descriptor DPL < CPL THEN #GP(gate sel ector);
| F descriptor DPL < gate sel ector RPL THEN
#GP(gate sel ector);
| F gate NOT PRESENT THEN #NP(gate sel ector);
(*Exam ne selector to code segnent in call gate descriptor: *)
I F selector is null THEN #GP(0);
I'F selector NOT within its descriptor table linmts THEN
#GP(CS sel ector);
I F descriptor AR indicates non-code segnent THEN
#GP(CS sel ector);
I F nonconf ornmi ng AND
code segnent descriptor DPL NOT = CPL THEN
#GP(CS sel ector);
I F conform ng AND
code segnent descriptor DPL > CPL THEN

306 Chapter 6 Processor Instructions

JMP

#GP(CS sel ector);
| F code segment NOT PRESENT THEN #NP(CS sel ector);
IF target_offset NOT within code segnment linmit THEN
#GP(0) ;
(*END check code segnent selector in call gate descriptor*)
| F OperandSi ze = 32 THEN
Load CS:EIP fromcall gate;
ELSE
Load CS:IP fromcall gate;
Load CS cache with new code segment descriptor;
RPL (*of CS*) := CPL;

TASK_GATE:
| F gate descriptor DPL < CPL THEN #TS(gate sel ector);
| F gate descriptor DPL < gate sel ector RPL THEN
#TS(gate sel ector);
| F task gate NOT PRESENT THEN #NP(gate sel ector);
(*Exam ne selector to TSS given in task gate descriptor: *)
I F selector specifies local in |ocal/global bit THEN
#TS(TSS sel ector);

IF index NOT within GDT limts THEN #TS(TSS sel ector);
(*END check TSS selector given in task gate descriptor*)
Swi t chTasks (*w t hout nesting*) to TSS;

IF (E)IP NOT within code segnment limt THEN #TS(O);
TASK_STATE_SEGVENT:

IF TSS DPL < CPL THEN #TS(TSS sel ector);

IF TSS DPL < TSS sel ector RPL THEN #TS(TSS sel ector);

Swi t chTasks (*w t hout nesting*) to TSS;

IF (E)IP NOT within code segnment limt THEN #TS(O);

ASM 386 Assembly L anguage Reference Chapter 6 307

JMP

Discussion

The JMP instruction transfers control to a different point in the instruction stream
without recording return information.

The assembler automatically generates the correct form and sets the operand size
attribute of the instruction according to the type of label:

Table6-20. IMP Label Types, Operand Sizes and I nstructions

Operand

Size Instruction Chosen Label Type

T E8 cd JMP rel8 NEAR (short within code segment)

T E9 cw JMP rell6 NEAR within USE16 code segment

T E9 cd JMP rel32 NEAR within USE32 code segment

T FF /4 JMP r16 NEAR (label in register and USE16 code segment)
T FF /4 JMP r32 NEAR (label in register and USE32 code segment)
16 FF /4 JMP m16 memory indirect NEAR USE16 code segment

32 FF /4 JMP m32 memory indirect NEAR USE32 code segment

16 FF /5 JMP m16:16 memory indirect FAR USE16 code segment

32 FF /5 JMP m16:32 memory indirect FAR USE32 code segment

16 EA cd JMP ptr16:16 FAR to USE16 code segment

32 EA ¢cp JMP ptr16:32 FAR to USE32 code segment

T The operand size attribute defaults to the USE attribute of the code segment.

308

Jumps with labels of type r/ mi6, r/ n82, rel 8, rel 16, and r el 32 are near
jumps. They do not involve changing the segment register value.

JMP rel 8, JMP rel 16, and JMP r el 32 determine the destination by adding an
offset to the address of the instruction following the JIMP. Ther el 16 formisused
when the instruction's operand size attribute is 16-bits (USE16 segment only);

r el 32 isused when the operand size attribute is 32-bits (USE32 segment only).
Theresult is stored in the 32-hit EIP register. The upper 16-bits of EIP are cleared
for arel 16 operand so that the offset does not exceed 16-bits.

JMP r/ mi6 and IMP r/ nB2 specify aregister or memory location from which the
absolute offset is fetched. The number of bitsin the offset depends on the operand
size attribute.

JMP ptr16: 16 and IMP pt r 16: 32 use a 4-byte or 6-byte operand as along
pointer to the destination. JMP n6: 16 and IMP nmi6: 32 fetch the long pointer
from the memory location specified (indirection).

Chapter 6 Processor Instructions

JMP

In real address or virtual 8086 mode, the long pointer provides 16-bits for the CS
register and 16- or 32-bits for the EIP register (depending on the operand size
attribute). In protected mode, the long pointer forms of JMP check the access rights
(AR) in the descriptor indexed by the selector part of the long pointer. Depending
on the value of AR, JMP performs one of the following control transfers:

* A jump to acode segment at the same privilege level
* A jump to aconforming code segment (at a more privileged level)
* A task switch

See also: Protected mode control transfers, 80386 Programmer's Reference
Manual

Flags Affected

All if atask switch takes place; noneif no task switch occurs
Exceptions by Mode

Protected
Near direct jumps: #GP(0) if the label is beyond the code segment limits

Near indirect jumps: #GP(0) for an illegal memory operand effective address in the
CS, DS, ES, FS, or GS segments: #SS(0) for anillegal addressin the SS segment;
#GP if the indirect offset obtained is beyond the code segment limits; #PF(fault-
code) for a page fault

Far jumps: #GP, #NP, #SS, and #TS, as indicated in the Operation section

Real Address

Interrupt 13 if any part of the operand would be outside of the address space from 0
to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 309

LAHF

LAHF Load Flagsinto AH Register

Opcode Instruction Clocks Description
9F LAHF 2 Load AH with flags SF ZF xx AF xx PF
xx CF

Operation
(AH) := (SF): (ZF):xx: (AF):xx: (PF):xx: (CF);

Discussion

LAHF transfers the low byte of the flag dword to AH. The bits, from MSB to LSB,
are sign, zero, indeterminate, auxiliary, carry, indeterminate, parity, indeterminate,
and carry.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

310 Chapter 6 Processor Instructions

LAR

LAR Load Access Rights

Opcode Instruction Clocks Description

OF02/r LART16,r/ml6 pm=15/16 r16 :=r/m16 masked by FFOO
OF02/r LART32,r/m32 pm=15/16 r32 := r/m32 masked by 00FxFFO0
Operation

IF selector index NOT within its table limts
OR ((descriptor (*selected by Src*) does
NOT i ndi cate conform ng code segnent)
AND (CPL > DPL (*of descriptor*)
OR RPL (*of Src*) > DPL))

OR
descriptor (*selected by Src*) is Invalid
(*see Tabl e 6-21%)
THEN
ZF :=0
ELSE
/F =1
tenp : = second dword of sel ected descriptor

I F OperandSi ze = 32 THEN
Dest := tenp AND OOFxFFOOH
ELSE (*OperandSi ze = 16*)
Dest := (Truncate(tenp)) AND FFOOH

Discussion

ASM 386 Assembly L anguage Reference

LAR loads the destination register (first operand) with the segment descriptor's
access rights that it obtains from the second operand; the second operand should be
aselector. LARclears ZF if:

* The selector (second operand) index is outside its table limits.

» The associated descriptor does not indicate a conforming code segment, and
the current privilege level or the selector's privilege level does not permit
access to the descriptor.

* The AR of the descriptor has an invalid type field value (see Table 6-21).

Otherwise, LAR sets ZF and loads a masked form of the second dword of the
descriptor. LAR masks this dword with 00FxFF00 and loads the result (or its lower
16-bits) into the destination register. The X in the 32-bit mask value indicates that
the upper 4-bits of the limit field are undefined in the value loaded by LAR.

Chapter 6 311

LAR

All code and data segment descriptors are valid for LAR. The valid/invalid system
descriptor typesfor LAR are the following:

Table 6-21. System Descriptor Typesfor LAR

Type Valid/Invalid Name

0 Invalid Invalid

1 Valid Available 286 processor TSS

2 Valid LDT

3 Valid Busy 286 processor TSS

4 Valid 286 processor call gate

5 Valid 286/Intel386 processor task gate
6 Valid 286 processor trap gate

7 Valid 286 processor interrupt gate

8 Invalid Invalid

9 Valid Available Intel386 processor TSS
A Invalid Invalid

B Valid Busy Intel386 processor TSS

C Valid Intel386 processor call gate

D Invalid Invalid

E Valid Intel386 processor trap gate

F Valid Intel386 processor interrupt gate

Flags Affected

ZF as described in the Discussion section
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

312 Chapter 6 Processor Instructions

LAR

Real Address
Interrupt 6; LARis not recognized in Real Address Mode

Virtual 8086
Same as Real Address Mode

ASM 386 Assembly L anguage Reference Chapter 6 313

LDS/LES/LFS/LGS/LSS

LDS/LES/LFS/LGS/LSS Load Full Pointer

SS;
DS;
ES;
FS;
GS,

Clocks

7,pm=22
7,pm=22
7,pm=22
7,pm=22
7,pm=22
7,pm=22
7,pm=25
7,pm=25
7,pm=25
7,pm=25

(*l oad
(*l oad
(*l oad
(*l oad
(*l oad

Opcode Instruction
C5/r LDSr16,m16:16
C5/r LDSr32,mi16:32
OFB2/r LSSr16,m16:16
OFB2/r LSSr32,m16:32
Calr LESr16,m16:16
C4lr LESr32,m16:32
OF B4 /r LFSr16,m16:16
OF B4 /r LFSr32,m16:32
OFB5/r LGSr16,m16:16
OFB5/r LGS r32,mi16:32
Operation
CASE instruction OF
LSS: Sreg is
LDS: Sreg is
LES: Sreg is
LFS: Sreg is
LGS: Sreg is
ENDCASE;

I F node = protected THEN
GOTO CHECK_SREG _LQAD;
ELSE
GOTO LOAD_SREG,

CHECK_SREG_LOAD:

314

IF Sreg = SS THEN
I F selector i

I F selector index NOT within its descriptor table limts THEN
#GP(sel ector);

| F sel ector

s null

Description

Load DS:r16 with pointer from memory
Load DS:r32 with pointer from memory
Load SS:r16 with pointer from memory
Load SS:r32 with pointer from memory
Load ES:r16 with pointer from memory
Load ES:r32 with pointer from memory
Load FS:r16 with pointer from memory
Load FS:r32 with pointer from memory
Load GS:r16 with pointer from memory
Load GS:r32 with pointer from memory

SS register*)
DS regi ster*)
ES register*)
FS register¥)
GS register*)

THEN #GP(0) ;

RPL NOT = CPL THEN #GP(sel ector);

AR nmust indicate witable data segnent

ELSE #GP(sel ector);
IF DPL (*in AR*) NOT = CPL THEN #GP(sel ector);
I F segment NOT PRESENT THEN #NP(sel ector);
GOTO LOAD_SREG,

Chapter 6

Processor | nstructions

LDS/LES/LFS/LGS/LSS

(*END checks protected node, |oad SS*)
IF Sreg = DS OR ES OR FS OR GS THEN
I F selector index NOT within its descriptor table limts THEN
#GP(sel ector);
AR nmust indicate data or readabl e code segnent
ELSE #GP(sel ector);
I F data or nonconform ng code segnent AND
RPL > DPL (*in AR*) OR CPL > DPL THEN
#GP(sel ector);
I F segment NOT PRESENT THEN #NP(sel ector);
GOTO LOAD_SREG,
(*END checks protected node, load DS, ES, FS, or GS*)

LOAD SREG
| F OperandSi ze = 16 THEN
ri6 := [EffectiveAddress]; (* 16-bit transfer *)
Sreg := ([EffectiveAddress] + 2); (* 16-bit transfer *)
ELSE (*OperandSi ze = 32%*)
r32 .= [EffectiveAddress]; (* 32-bit transfer *)
Sreg := ([EffectiveAddress] + 4); (* 16-bit transfer *)
ENDI FELSE; (*OperandSize = 16 or 32%)
I F node = protected THEN
Load Sreg cache wi th descriptor;

Discussion

LDS/ LES/ LFS/ LGS/ LSS read afull pointer (second operand) from memory and
storeit in the selected segment register:register pair. Depending on the instruction,
the 16-bit full pointer isloaded into SS, DS, ES, FS, or GS. Ther 32 or r 16 (first
operand) is loaded with 32- or 16-bits depending on its operand size attribute.

When a protected mode assignment is made to one of the segment registers, its
associated segment register cacheis also loaded. The data for the cache is obtained
from the descriptor table entry for the selector.

LGS/ LDS/ LES/ LFS can load a null selector (values 0000-0003) into the DS, ES,
FS, or GS registers without causing a protection exception. However, the #GP(0)
exception israised by any subsequent attempt to access a segment whose
corresponding segment register has anull selector. (No memory reference to the
segment occurs.)

Flags Affected

None

ASM 386 Assembly L anguage Reference Chapter 6 315

LDS/LES/LFS/LGS/LSS

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #UD if the second
operand is aregister; #GP(0) if anull selector isloaded into SS; #PF(fault-code) for
apage fault

Real Address

Interrupt 6 if the second operand is aregister; Interrupt 13 if any part of the
operand would lie outside the effective address space from 0 to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

316 Chapter 6 Processor Instructions

LEA

LEA Load Effective Address

Opcode Instruction Clocks Description

8D /r LEA r16,m 2 Store effective address for min register r16
8D /r LEA r32,m 2 Store effective address for min register r32
Operation

I F OperandSi ze = 16 AND AddressSize = 16 THEN

rl6 := Addr(m;
| F OperandSi ze = 16 AND AddressSize = 32 THEN

r16 := Truncate(Addr(n)); (*32-bits truncated to 16-bits*)
| F OperandSi ze = 32 AND AddressSize = 16 THEN

r32 := ZerokExtend(Addr(m); (*16-bits extended to 32-bits*)
| F OperandSi ze = 32 AND AddressSize = 32 THEN

r32 := Addr(m;

Discussion

LEA calculates the offset effective address and loads it into the 32- or 16-bit register
specified asthe first operand. The first operand (destination) determinesLEA's
operand size attribute (represented by OperandSize in the Operation algorithm).
The USE attribute of the segment that contains LEA's second operand (source)
determines the address size attribute (represented by AddressSize in the Operation
algorithm). If the address size attribute does not match the operand size attribute,
LEA truncates or zero-extends the second operand to fit the destination.

Flags Affected

None
Exceptions by Mode

Protected
#UD if the second operand is aregister

ASM 386 Assembly L anguage Reference Chapter 6 317

LEA

Real Address

Interrupt 6 if the second operand is aregister

Virtual 8086
Same as Real Address Mode

318 Chapter 6 Processor Instructions

LEAVE

LEAVE High Level Procedure Exit

Opcode Instruction Clocks Description
C9 LEAVE 4 Set SP to BP, then pop BP
C9 LEAVE 4 Set ESP to EBP, then pop EBP
Operation
| F StackAddr Si ze = 16 THEN
SP : = BP
BP : = Pop();
ELSE (*StackAddr Size = 32%)
ESP : = EBP

EBP : = Pop();

Discussion

LEAVE reverses the actions of the ENTER instruction. By copying the frame pointer
to the stack pointer, LEAVE releases the stack space used by a procedure for its
local variables. The old frame pointer is popped into BP or EBP, restoring the
caler'sframe. A subsequent RET n instruction removes any parameters that were
passed viathe stack to the exiting procedure.

Flags Affected

None
Exceptions by Mode

Protected

#55(0) if (E)BP does not point to alocation within the limits of the current stack
segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 319

LGDT/LIDT

LGDT/LIDT Load Global/l nterrupt Descriptor Table Register

Opcode Instruction Clocks Description

OF01/2 LGDT m 11 Load minto GDTR

OF01/3 LIDT m 11 Load minto IDTR
Operation

(*OperandSi ze is determ ned by the USE attribute of the code
segnment *)
IF instruction = LI DT THEN
I F OperandSi ze = 16 THEN
IDTR. Limt:Base := ml6:24; (*24-bits of base | oaded*)
ELSE
IDTR. Linmt:Base := ml6: 32;
ELSE (*instruction = LGDT*)
I F OperandSi ze = 16 THEN
GDTR Linmt: Base := ml6:24; (*24-bits of base | oaded*)
ELSE
GDTR. Limt: Base := nml6: 32;

Discussion

The LGDT and LI DT instructions load a linear base address and limit value from a
6-byte operand in memory into the GOTR or | DTR, respectively. LGDT/ LI DT load
the low-order word of the operand into the limit field. |f a 32-bit operand is used,
LGDT/ LI DT load the high-order dword of the 6-byte operand as the base field. If a
16-bit operand is used, LGDT/ LI DT load the first 3 bytes of the high-order dword as
the base field; the high-order 8-bits of the 6-byte operand are not used.

LGDT and LI DT are privileged (level 0) instructions that appear in operating system
software. They are the only instructions that directly load an actual linear address
(i.e., not a segment relative address) in processor protected mode. LGDT/ LI DT are
valid in real address mode to allow power-up initialization for protected mode.

The counterpart instructions for LGDT/ LI DT are SGDT/ SI DT. These instructions
always store into all 48-hits of the 6-byte operand. The processor SGDT/ SI DT
write the high-order 8 address bits for both 32- and 16-bit operands. If a preceding
LGDT/ LI DT loaded a 16-bit operand, SGDT/ SI DT store the upper 8-bits as zeros.
The 286 processor SGDT/ SI DT left the upper 8-bits undefined in this case.

320 Chapter 6 Processor Instructions

LGDT/LIDT

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the current privilege level isnot O; #UD if the source operand isa
register; #GP(0) for an illegal memory operand effective address in the CS, DS, ES,
FS, or GS segments; #SS(0) for an illegal addressin the SS segment; #PF(fault-
code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the address space from 0 to
OFFFFH; Interrupt 6 if the source operand is aregister

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 321

LGDTW/LGDTD/LIDTW/LIDTD

LGDTW/LGDTD/LIDTW/LIDTD

Load Global/Interrupt Descriptor Table Register with WORD/DWORD Operand

Opcode Instruction Clocks Description

OF 01/2 LGDTW mi6 11 Load m16 into GDTR

OF 01/2 LGDTDm32 11 Load m32into GDTR

OF 01/2 LIDTWmi6 11 Load m16into IDTR

OF 01/2 LIDTD m32 11 Load m32into IDTR
Operation

IF instruction = LI DTW THEN

IDTR. Limt: Base =nl6:24; (* 24-bits of base | oaded *)
IF instruction = LIDITD THEN

I DTR Lim t: Base =ml6: 32
IF instruction = LGDTW THEN

GDTR. Li m t: Base =nl6:24; (* 24-bits of base | oaded *)
IF instruction = LGDTD

GDTR. Li m t: Base =nl6: 32

Discussion

The LGDTW LGDTD, LI DTW and LI DTDinstructions are variants of the LGDT and
LI DT instructions. They load a linear base address and limit value from 6 bytesin
memory into the GDTR or | DTR, respectively.

These variants allow the 16-bit or 32-bit form of the instructions to be used without
hard-coding address and operand prefixes to override the USE attribute currently in
effect.

For example, since the processor starts up in USE16, real address mode, if you are
writing in aUSE32 code segment for flat model, the LGDTWand LI DTwinstructions
can be used to force the correct override prefixes.

The variants automatically generate any operand or address prefixes that are
necessary as follows:

322 Chapter 6 Processor Instructions

LGDTW/LGDTD/LIDTW/LIDTD

USE16 USE16 Address USE32 Operand USE32 Address
Instruction Operand Prefix Prefix Prefix Prefix
LGDTW/LIDTW NO NO YES YES
LGDTD/LIDTD YES YES NO NO

See also: LGDT/ LI DT instructions for further discussion, flags affected, and
exceptions, in this chapter

ASM 386 Assembly L anguage Reference Chapter 6 323

LLDT

LLDT LoadLoca Descriptor Table Register

Opcode Instruction Clocks Description
OF 00 /2 LLDT r/m16 20 Load selector r/m16 into LDTR
Operation

IF Tl (*of selector*) NOT = 0

OR descriptor (*indexed by selector*) NOT an LDT THEN
#GP(sel ector);

I F LDT NOT PRESENT THEN #NP(sel ector);

IF selector NOT within GDT limts THEN #GP(0);

LDTR : = Src;

Discussion

LLDT loads the Local Descriptor Table register (LDTR). The word operand
(memory or register) to LLDT should contain a selector to the Global Descriptor
Table (GDT). The GDT entry should be aLocal Descriptor Table descriptor. |1f so,
then the LDTR isloaded from the entry. The selector operand can be 0; if so, the
LDTR ismarked invalid. All subsequent descriptor references through that LDT
(except by LAR, VERR, VERWOr LSL) cause a #GP exception. LLDT does not affect
the descriptor cache entriesfor DS, ES, SS, FS, GS, and CS, nor does it change the
LDT field in the task state segment. The operand size attribute has no effect on this
instruction. LLDT isaprivileged (level 0) instruction used only in operating
system software.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the current privilege level is not 0; #GP(selector) if the selector operand
does not point into the Global Descriptor Table, or if the entry inthe GDT isnot a
Local Descriptor Table; #GP(0) if LDT selector is outside GDT limits;
#NP(selector) if the LDT descriptor is not present; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

324 Chapter 6 Processor Instructions

LLDT

Real Address
Interrupt 6; LLDT is not recognized in Real Address Mode

Virtual 8086

Same as Real Address Maode (because the instruction is not recognized, it will not
execute or perform a memory reference)

ASM 386 Assembly L anguage Reference Chapter 6 325

LMSW

LM SW Load Machine Status Word

Opcode Instruction Clocks Description
OF01/6 LMSWr/mli6 10/13 Load r/m16 into machine status word in CRO

Operation
MBW :=r/ml6; (*16-bits stored in MSW of CRO*)

Discussion

L MSWIoads the machine status word from the source operand into CRO. LMsWis a
privileged (level 0) instruction used only in operating system software. The
operand size attribute has no effect on LMsW

LMSWcan be used to switch to protected mode. If it is, LMSWmust be followed by a
jump to flush the instruction queue. LMSWwill not switch back to real address
mode.

Thisinstruction is provided for compatibility with the 286 processor. LMsWwill
not affect the ET bit. In new processor programs, use MOV CRO rather than LMSW

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the current privilege level is not 0; #GP(0) for an illegal memory operand
effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal
address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

326 Chapter 6 Processor Instructions

LOCK

LOCK Assert Bus LOCK# Signal Prefix

Opcode Instruction Clocks Description
FO LOCK 0 Assert bus LOCK# signal for the next instruction

Discussion

The LOCK prefix causes the processor LOCK# signal to be asserted during execution
of the instruction that follows it. Inamultiprocessor environment, this signal
ensures that the processor has exclusive use of any shared memory while LOCK# is
asserted.

The LOCK prefix functions only with the following instructions:

BT, BTS, BTR, BTC mem reg/i nm
CVPXCHG, XADD, XCHG mem reg
XCHG reg, nem

ADD, ADC, SBB, SUB, AND, OR, XORmem reg/ i mm
NOT, NEG, | NC, DEC mem

A LOCK prefix to any other instruction causes an undefined opcode exception.
XCHG always asserts LOCK# regardless of the presence or absence of the LOCK
prefix.

The integrity of the lock is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Locked accessis not assured if another processor is concurrently executing an
instruction that has one of the following characteristics:

* Theinstruction isnot preceded by a L OCK prefix.
* Theinstruction isnot in the preceding list.

» Theinstruction specifies a memory operand that does not exactly overlap the
destination operand. Locking is not guaranteed for partial overlap, even if one
memory operand is wholly contained within another.

The 8086, 80186, and 286 processors implement a superset of the processor LOCK
function. 8086/80186/286 processor programs that depend on LOCK may not
execute properly if transported to the processor.

Flags Affected

None

ASM 386 Assembly L anguage Reference Chapter 6 327

LOCK

Exceptions by Mode

Protected

#GP(0) if the current privilege level is higher (less privileged) than | OPL; #UD if
LOCK is used with an instruction not listed in the Discussion section; other
exceptions can be generated by the subsequent (locked) instruction

Real Address

Interrupt 6 if LOCK isused with an instruction not listed in the Discussion section;
exceptions can still be generated by the subsequent (locked) instruction

Virtual 8086
Same as Real Address Mode

328 Chapter 6 Processor Instructions

LODS/LODSB/LODSW/LODSD

LODS/LODSB/LODSW/LODSD Load String Operand

Description

Load byte [(E)SI] into AL, update (E)SI

Load word [(E)SI] into AX, update (E)SI

Load dword [(E)SI] into EAX, update (E)SI
Load byte DS.[(E)SI] into AL, update (E)SI
Load word DS;[(E)SI] into AX, update (E)SI
Load dword DS:[(E)SI] into EAX, update (E)S|

Opcode Instruction Clocks

AC LODS m8 5

AD LODS m16 5

AD LODS m32 5

AC LODSB 5

AD LODSW 5

AD LODSD 5
Operation

I F AddressSi ze = 16 THEN

Use SI for Srclndex;

ELSE (*AddressSi ze = 32*%)

Use ESI

for Srclndex;

I F byte instruction THEN

AL := [Srclndex];
ELSE

I F OperandSi ze 16

AX : = [Srcl ndex];

IF DF =

ELSE (* OperandSize

EAX : = [Srcl ndex]

IF DF = 0 THEN I ncDec :

Srclndex := Srclndex + |

Discussion

0 THEN I ncDec :

(* byte load *)
IF DF = 0 THEN I ncDec :

= 1 ELSE IncDec := -1;
THEN
(* word |l oad *)
= 2 ELSE IncDec := -2;
= 32 *)
; (* dword | oad *)
= 4 ELSE |IncDec := -4,

ncDec;

LODS loadsthe AL, AX, or EAX register with the memory byte, word, or dword at
the location pointed to by Sl or ESI. The source index register advances after the
transfer ismade. |If the direction flag is 0 (CLD was executed), it increments; if the
direction flag is 1 (STD was executed), it decrements. The increment or decrement
islif abyteisloaded, 2 if aword isloaded, or 4 if adword isloaded.

If the address size attribute for this instruction is 16-bits, Sl is used for the source
index register; otherwise, the address size attribute is 32-bits, and ES| is the source

index register.

ASM 386 Assembly L anguage Reference

Chapter 6 329

LODS/LODSB/LODSW/LODSD

The address of the source datais determined solely by the contents of (E)SI, not by
the LODS operand. Load the correct index value into (E)SI before executing LODS.
The USE attribute of the code segment determines whether ESI or Sl is the source
index register.

The purpose of the operand is to validate segment addressability and to determine
the data type. The type of the LODS operand determines whether a byte, word, or
dword is moved. The segment addressability of the operand determines whether a
segment override byte is produced.

LODSB, LODSW LODSD are synonyms for the byte, word, and dword LODS
instructions. They are simpler, but they provide no type or segment checking.

Use LODS within a LOOP construct when further processing of data moved into AX
or AL isnecessary. LODS can be preceded by the REP prefix, but REP just uses
clockswith LODS. If REP is specified, the repeat count is taken from ECX (USE32
segment) or CX (USE16 segment).

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

330 Chapter 6 Processor Instructions

LOOP/LOOPcond

LOOP/LOOPcond Loop Control with (E)CX Counter

Opcode Instruction Clocks Description

E2 cb LOOPrel8 11+m DEC count; jump short if count NOT =0

Elcb LOOPE rel8 11+m DEC count; jump short if count NOT =0
andZF=1

Elcb LOOPZ rel8 11+m DEC count; jump short if count NOT =0
andZF=1

EO cb LOOPNE rel8 11+m DEC count; jump short if count NOT =0
andZF =0

EOcb LOOPNZ rel8 11+m DEC count; jump short if count NOT =0
and ZF =0

Operation

| F AddressSi ze = 16 THEN
Count Reg : = CX;
ELSE
Count Reg : = ECX;
Count Reg : = CountReg - 1;
IF instruction = LOOP THEN
BranchCond : = Count Reg NOT = O0;
ELSE
I F instruction LOOPE OR LOOPZ THEN
BranchCond := (ZF = 1) AND (Count Reg NOT = 0);
IF instruction = LOOPNE or LOOPNZ THEN
BranchCond : = (ZF = 0) AND (CountReg NOT = 0);
ENDI FELSE; (*determ ne BranchCond*)
I F BranchCond THEN
I F OperandSi ze = 16 THEN
IP:= 1P + SignExtend(rel8);
ELSE (*OprandSi ze = 32%)
EIP := EIP + SignExtend(rel 8);

ASM 386 Assembly L anguage Reference Chapter 6

331

LOOP/LOOPcond

Discussion

LOOP decrements the count register without changing any of the flags. Conditions
are then checked for the form of LOOP being used. If the conditions are met, a
short jump is made to the label specified as the LOOP operand.

The LOOP operand must be alabel in the range from 128 (decimal) bytes before the
instruction to 127 bytes ahead of the instruction.

Otherwise, the assembler cannot generate the 1-byte signed displacement required
by the instruction format.

The USE attribute of the segment determines the address size attribute. If the
address size attribute is 16-bits, the CX register is used as the count register;
otherwise the ECX register is used.

The LOOP instructions not only provide iteration control; they combine loop index
management with conditional branching. Use these instructions by loading an
unsigned iteration count into the count register, then code the LOOP at the end of a
series of instructions to be iterated. The destination of LOOP is alabel that points to
the beginning of the iteration.

Flags Affected

None
Exceptions by Mode

Protected
#GP(0) if the offset jumped to is beyond the limits of the current code segment

Real Address

None

Virtual 8086

None

332 Chapter 6 Processor Instructions

LSL

LSL Load Segment Limit

Opcode Instruction

OF03/r LSL r16,r/m16

OF03/r LSL r32,r/m32

OF03/r LSL r16,r/m16

OF03/r LSL r32,r/m32
Operation

Clocks
pm=20/21

pm=20/21
pm=25/26

pm=25/26

Description

Load: r16 := segment limit, selector
r/m16 (byte granular)

Load: r32 := segment limit, selector
r/m32 (byte granular)

Load: r16 := segment limit, selector
r/m16 (page granular)

Load: r32 := segment limit, selector
r/m32 (page granular)

IF selector index NOT within its table limts
OR ((descriptor (*selected by Src*) does
NOT i ndi cate conform ng code segnent)
AND (CPL > DPL (*of selected descriptor*)

OR RPL (*of Src*) > DPL))

descriptor (*selected by Src*) is Invalid

OoR

(*see Tabl e 6-22%)
THEN

ZF = 0;
ELSE

F = 1;

tenp := ZeroExtend(limt);
(*Convert page granularity to byte granularity*)
IF (*granularity bit of descriptor*) = 1 THEN
temp := (ShiftLeft(tenp,12)) OR OFFFH;

I F OperandSi ze
Dest : = tenp;

ELSE

Dest

32 THEN

Truncat e(tenp);

ASM 386 Assembly L anguage Reference

(*of descriptor selected by Src*)

Chapter 6 333

LSL

Discussion

334

LSL loads a segment limit (second operand) into aregister; this operand should be

aselector.

LSL clears ZF if:

* The selector (second operand) index is outside its table limits.

» The associated descriptor does not indicate a conforming code segment, and
the current privilege level or the selector's privilege level does not permit

access to the descriptor.

* Theaccessrights (AR) of the descriptor has an invalid type field value (see

Table 6-22).

Otherwise, LSL sets ZF and |oads the byte-granular segment limits from the
descriptor. Code and data segment descriptors are valid for LSL. The valid/invalid

system descriptor typesfor LSL are;

Table 6-22. System Descriptor Typesfor LSL

Type Valid/Invalid Name

0 Invalid Invalid

1 Valid Available Intel286 processor TSS
2 Valid LDT

3 Valid Busy Intel286 processor TSS

4 Invalid Intel286 processor call gate

5 Invalid Intel286/Intel386 processor task gate
6 Invalid Intel286 processor trap gate

7 Invalid Intel286 processor interrupt gate
8 Invalid Invalid

9 Valid Available Intel386 processor TSS
A Invalid Invalid

B Valid Busy Intel386 processor TSS

C Invalid Intel386 processor call gate

D Invalid Invalid

E Invalid Intel386 processor trap gate

F Invalid Intel386 processor interrupt gate

LSL always loads the segment limit as a byte granular value. If the descriptor has a
page-granular segment limit, LSL will translate it to a byte-granular limit before
loading it in the destination register by shifting left 12 the 20-bit raw limit from the

descriptor, then ORing it with O0000FFFH.

Chapter 6

Processor | nstructions

LSL

Flags Affected

ZF as described in the Discussion section
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segments; #PF(fault-code) for
apage fault

Real Address
Interrupt 6; LSL is not recognized in Real Address Mode

Virtual 8086
Same as Real Address Mode

ASM 386 Assembly L anguage Reference Chapter 6 335

LTR

LTR Load Task Register

Opcode Instruction Clocks Description
OF 00/3 LTR r/ml6 pm=23/27 Load r/m effective addressinto

task register

Operation

IF Tl (*table index field of Src selector*) = 1 THEN
#GP(sel ector);

IF selector index NOT within GDT limts THEN #GP(sel ector);

I F descriptor (*selected by Src*) NOT TSS or
descri ptor marked busy THEN #GP(sel ector);

IF B (*in descriptor*) = 1 THEN #GP(sel ector);

I F TSS NOT PRESENT THEN #NP(sel ector);

TR : = r/nlé6;

B (*in descriptor*) := 1;

Load TSS descriptor into TR cache;

Discussion

LTR loads the task register from the source register or memory location specified
by the operand. The operand is a selector for a TSS descriptor. The associated TSS
descriptor in the GDT is then marked busy. A task switch does not occur. LTRisa
privileged (level 0) instruction used only in operating system software. The
operand size attribute has no effect on this instruction.

Flags Affected

None

Exceptions by Mode

Protected

336

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #GP(0) if the current
privilege level is not 0; #GP(selector) if the object named by the source selector is
not aTSS or is already busy; #NP(selector) if the TSS is marked not present;
#PF(fault-code) for a page fault

Chapter 6 Processor Instructions

LTR

Real Address
Interrupt 6; LTRis not recognized in Real Address Mode

Virtual 8086
Same as Real Address Mode

ASM 386 Assembly L anguage Reference Chapter 6 337

MOV

M OV Move Data

Opcode Instruction Clocks Description

88/r MOV r/m8,r8 2/2 Move byte register to r/m byte

89/r MOV r/mi6,r16 2/2 Move word register to r/mword

89/r MOV r/m32,r32 2/2 Move dword register to r/m
dword

8A Ir MOV r8,r/m8 2/4 Move r/m byte to byte register

8B/r MOV r16,r/m16 2/4 Move r/mword to word register

8B/r MOV r32,r/m32 2/4 Move r/m dword to dword
register

8CI/r MOV r/m16,Sreg 2/2 Move segment register to r/m
word

8E/r MOV Sreg,r/ml6 2/5, Move r/mword to

pm~=18/19 segment register

A0 MOV AL,moffs8 4 Move byte at (seg: offset) to AL

Al MOV AX,moffsl6 4 Move word at (seg: offset) to AX

Al MOV EAX,moffs32 4 Move dword at (seg: offset) to
EAX

A2 MOV moffs8,AL 2 Move AL to (seg: offset)

A3 MOV moffsl6,AX 2 Move AX to (seg:offset)

A3 MOV moffs32,EAX 2 Move EAX to (seg:offset)

BO+rb MOV reg8,imm8 2 Move immediate byte to register

ib

B8+ rw MOV regl6,imml6 2 Move immediate word to register

iw

B8 +rd MOV reg32,imm32 2 Move immediate dword to

id register

C6ib MOV r/m8,imm3 22 Move immediate byte to r/m byte

C7iw MOV r/m16,imml6 22 Move immediate word to r/m
word

C7id MOV r/m32,imm32 22 Move immediate dword to r/m

dword

NOTE: moffs8, moffs16, and moffs32 all consist of a simple offset relative to the segment base. The 8, 16, and
32 refer to the size of the data. The address size attribute of the instruction determines the size of the offset,
either 16- or 32-bits. Sreg is one of SS, DS, ES, FS, or GS.

338 Chapter 6 Processor Instructions

MOV

Operation
I'F Dest NOT Sreg THEN
Dest .= Src;
ELSE

I F node NOT = protected THEN
Sreg := r/ml6;

ELSE
GOTO CHECK_SREG LOAD;,

CHECK_SREG LOAD:
IF Sreg = SS THEN
I F selector is null THEN #GP(0);
I F selector index NOT within its descriptor table limts THEN
#GP(sel ector);
I F selector RPL NOT = CPL THEN #GP(sel ector);
AR nust indicate witable data segnent
ELSE #GP(sel ector);
IF DPL (*in AR*) NOT = CPL THEN #CP(sel ector);
I F segnent NOT PRESENT THEN #NP(sel ector);
(*Disable interrupts until end of follow ng instruction*)
GOTO LOAD SREG,
(*END checks protected node, |oad SS*)
IF Sreg = DS OR ES OR FS OR GS THEN
I F selector index NOT within its descriptor table linits
THEN #GP(sel ector);
AR must indicate data or readabl e code segnment
ELSE #GP(sel ector);
I F data or nonconforning code segnent AND
RPL > DPL (*in AR*) OR CPL > DPL THEN
#GP(sel ector);
I F segnent NOT PRESENT THEN #NP(sel ector);
GOTO LOAD SREG,
(*END checks protected node, |load DS, ES, FS, or GS¥)

LOAD_SREG
Sreg := r/nié;
Load Sreg cache with descriptor;

ASM 386 Assembly L anguage Reference Chapter 6 339

MOV

Discussion
MOV copies the second operand to the first operand.

In protected mode when the destination operand is a segment register (SS, DS, ES,
etc.), then the associated register cacheis aso loaded. The datafor the cacheis
obtained from the descriptor table entry for the selector. A null selector (values
0000-0003) can be loaded into the DS, ES, FS, or GS registers without causing an
exception. However, the #GP(0) exception israised by any subsequent attempt to
access a segment whose corresponding segment register has anull selector. (No
memory reference occurs.)

A MOV into SSinhibits all interrupts until after the execution of the next instruction
(presumably a MOV into (E)SP).
Flags Affected

None
Exceptions by Mode

Protected

#GP, #SS, and #NP for an invalid load into a segment register, as described in the
Operation section; #GP(0) if the destination is a nonwritable segment; #GP(0) for
an illegal memory operand effective addressin the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

340 Chapter 6 Processor Instructions

MOV

MOV Movetoffrom Special Registers

Opcode
OF 20 /r

OF 22 /r

OF 21 /r

OF21/r

OF 23/r
OF23 /r
OF 24 Ir

OF 24 Ir
OF 26 /r

OF 26 /r

Instruction

MOV r32,CR0/
CR2/CR3

MOV CRO/CR2/
CR3,r32

MQV r32,
DRO-DR3

MOV r32,
DR6/DR7

MOV DRO-DR3,r32
MOV DR6/DR7,r32
MOV r32,TR3/
TR4/TR5

MOV r32,TR6/TR7

MOV TR3/TR4/
TR5,r32

MOV TR6/TR7,r32

Operation

Dest := Src;

Discussion

Clocks
6

10/4/5

22

14

22
16

12

12

Description
Move control register to register

Move register to control register
Move debug register to register
Move debug register to register

Move register to debug register
Move register to debug register
Move test register to register

(not available on Intel 386 or 376
processors)

Move test register to register

Move register to test register (not
available on Intel 386 or 376 processors)

Move register to test register

These forms of MOV store or load the following special registersinto or from a

general purpose register:

Control registers CR0, CR2, and CR3

Debug registers DRO, DR1, DR2, DR3, DR6, and DR7
Test registers TR3, TR4, and TR5 (not available on Intel 386 or 376 processors)
Test registers TR6 and TR7

32-hit operands are always used with these instructions, regardless of the operand
size attribute. These MOvVs must be executed at privilege level O or in real address
mode; otherwise, a protection exception will be raised.

ASM 386 Assembly L anguage Reference

Chapter 6

341

MOV

The reg field within the ModRMbyte specifies which of the special registersin each
category isinvolved; thereg field value isidentical to the integer suffix of the
special register name. The two bitsin the mod field are always 11. The r/ mfield
specifies the general register involved.

Flags Affected
OF, SF, ZF, AF, PF, and CF are undefined

Exceptions by Mode

Protected
#GP(0) if the current privilege level isnot O

Real Address

None

Virtual 8086
#GP(0) if instruction execution is attempted

342 Chapter 6 Processor Instructions

MOVS/MOVSB/MOVSW/MOVSD

MOVS/MOVSB/MOVSW/MOVSD Move Stri ng to String

Opcode Instruction Clocks
A4 MOVS m8,m8 7

A5 MOVSm16,mi6 7

A5 MOVSm32, m32 7

A4 MOV SB 7

A5 MOV SW 7

A5 MOVSD 7
Operation

IF (instruction =
Oper andSi ze
ELSE
Oper andSi ze : = 16;
I F AddressSi ze = 16 THEN
Use SI
ELSE (*AddressSi ze = 32%)

1= 32;

Use ESI for Srclndex and EDI for Destlndex;
IF byte type of instruction THEN
[Dest I ndex] := [Srclndex];
IF DF = 0 THEN I ncDec := 1 ELSE IncDec := -1;
ELSE
[Destlndex] := [Srclndex];
| F OperandSi ze = 16 THEN
IF DF = O THEN IncDec := 2 ELSE IncDec:= -2;
ELSE (*OperandSi ze = 32%*)
IF DF = O THEN IncDec := 4 ELSE IncDec := -4;
Srclndex := Srclndex + IncDec;
Dest I ndex := Destlndex + |ncDec;
ASM 386 Assembly L anguage Reference Chapter 6 343

for Srclndex and DI

Description

Move byte [(E)SI] to ES:[(E)DI]
Move word [(E)SI] to ES,[(E)DI]
Move dword [(E)SI] to ES:[(E)DI]
Move byte DS;[(E)Sl] to ES[(E)DI]
Move word DS;[(E)SI] to ES;[(E)DI]
Move dword DS:[(E)SI] to ES.[(E)DI]

MOVSD) OR (instruction has dword operands) THEN
(*Assenbl er action*)

f or Dest | ndex;

MOVS/MOVSB/MOVSW/MOVSD

Discussion

MOVS copies the byte, word, or dword at [(E)Sl] to the byte, word, or dword at
ES:[(E)DI]. The destination operand must be addressable from the ES register; no
segment override is possible for the destination. A segment override can be used
for the source operand; the default is DS.

The contents of (E)SI and (E)DI determine the source and destination addresses,
not the MOVS operands. The purpose of the operands is to validate segment
addressability and to determine the datatype. Load the correct index valuesinto
(E)S!I and (E)DI before executing the MOVS instruction.

MOVSB, MOVSW and MOVSD are synonyms for the byte, word, and dword MOVS
instructions. They are simpler, but they provide no type checking and no way to
override the DS segment for the SI source location.

After the datais moved, both (E)S| and (E)DI advance automatically. If the
direction flag is O (CLD was executed), the registers increment; if the direction flag
is 1 (STD was executed), the registers decrement. (E)SI and (E)DI are incremented
or decremented by 1 if abyte was moved, by 2 if aword was moved, or by 4 if a
dword was moved.

MOVS can be preceded by the REP prefix for block movement of (E)CX bytes or
words. (See the REP reference page for more information.) For 32-bit operands
where strings overlap, the REP MOV will not overlap destructively only if:

Addr (Src) >= Addr(Dest) AND DF = 0O
OR Addr (Src) <= Addr(Dest) AND DF = 1.

Use an 8- or 16-bit operand for overlapped strings that must be moved in a
predictable way with REP MOVS.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the destination isin a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

344 Chapter 6 Processor Instructions

MOVS/MOVSB/MOVSW/MOVSD

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 345

MOVSX

MOVSX Movewith S gn-Extend

Opcode Instruction Clocks Description

OFBE/r MOVSXril6r/m8 3/6 Move sign-extended byte to word register

OFBE/r MOVSXr32r/m8 3/6 Move sign-extended byte to dword register

OFBF/r MOVSXr32,r/ml6 3/6 Move sign-extended word to dword register
Operation

Dest := SignExtend(Src);

Discussion

MOVSX reads the contents of the effective address or register as a byte or aword. It
sign-extends the value to the operand size attribute of the instruction (16- or 32-
bits). Then, MOVSX stores the result in the destination register.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

346 Chapter 6 Processor Instructions

MOVZX

MOVZX Movewith Zero-Extend

Opcode Instruction Clocks Description
OFB6/r MOVZX rl16,r/m8 3/6 Move zero-extended byte to word register
OFB6/r MOVZX r32,r/m8 3/6 Move zero-extended byte to dword register
OFB7/r MOVZXr32,r/ml6 3/6 Move zero-extended word to dword register
Operation

Dest := ZeroExtend(Src);
Discussion

MOVZX reads the contents of the effective address or register as a byte or aword. It
zero-extends the value to the operand size attribute of the instruction (16- or 32-
bits). Then, MOVZX stores the result in the destination register.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside of the effective address
space from 0 to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 347

MUL

MUL Unsigned Multiplication of AL, AX or EAX

Opcode Instruction Clocks Description
F6 /4 MUL r/m8 9-14/12-17 Unsigned multiply (AX := AL * r/mbyte)
F7/4 MUL r/ml6 9-22/12-25 Unsigned multiply (DX:AX := AX * r/mword)

F71/4 MUL r/m32 9-38/12-41 Unsigned multiply (EDX:EAX := EAX * r/m
dword)

NOTE: The processor uses an early-out multiply algorithm. The actual number of clocks depends on the
position of the most significant bit in the multiplier. Optimization occurs for both positive and negative
multiplier values. Because of the early-out algorithm, clock counts given are minimum to maximum.
To calculate the actual clocks, use the following formula:

IF m =0 THEN ActualClock := 9;
ELSE ActualClock := max(ceiling(log, [m]),3) = 6 clocks;

where m is the multiplier.

Operation

| F byte-size operation THEN
AX := AL * r/nS8,;
ELSE (*word or dword operation*)
I F OperandSi ze = 16 THEN
DX: AX := AX * r/mlé6;
ELSE (*OperandSi ze = 32*)
EDX: EAX := EAX * r/nB2;

Discussion

MUL performs unsigned multiplication. Its actions depend on the size of its
operand, asfollows:

* A byteoperand is multiplied with AL; the result isleft in AX. MUL clearsthe
carry and overflow flags (CF and OF) if AH is0; otherwise, it sets CF and OF.

* A word operand is multiplied with AX; theresult isleft in DX:AX. DX
contains the high-order 16-bits of the product. MJL clears CF and OF if DX
is 0; otherwise, it sets CF and OF.

* A dword operand is multiplied with EAX and the result is left in EDX:EAX.
EDX contains the high-order 32-bits of the product. MJUL clears CF and OF if
EDX is0; otherwise, it sets CF and OF.

348 Chapter 6 Processor Instructions

MUL

Flags Affected

OF and CF as described in the Discussion section; SF, ZF, AF, and PF are
undefined

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 349

NEG

NEG Twos Complement Negation

Opcode Instruction Clocks Description

F6/3 NEG r/m8 2/6 Two's complement negate r/m byte
F7/3 NEGr/ml6 2/6 Two's complement negate r/mword
F7/3 NEGr/m32 2/6 Two's complement negate r/m dword
Operation
IF r/m= 0 THEN
CF := 0;
ELSE
CF := 1;
r/'m:= -r/m
Discussion

NEG replaces the value of aregister or memory operand with its two's complement.
If the operand is 0, NEG clears the carry flag; otherwise, NEG sets CF.

Flags Affected
CF as described; OF, SF, ZF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result isin a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

350 Chapter 6 Processor Instructions

NOP

NOP o Operation

Opcode Instruction Clocks Description
90 NOP 3 No operation
Discussion

NOP performs no operation. NOP is a one-byte instruction that affects none of the
machine context except that (E)IP increments.

NOP is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM 386 Assembly L anguage Reference Chapter 6 351

NOT

NOT ores Complement Negation

Opcode Instruction Clocks Description

F6 /2 NOT r/m8 2/6 Reverse each bit of r/m byte

F7/2 NOT r/m16 2/6 Reverse each bit of r/mword

F7/2 NOT r/m32 2/6 Reverse each bit of r/m dword
Operation

r/m:= NOT r/m

Discussion

NOT inverts the operand. Every 1 becomes a0, and vice versa.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the result isin a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

352 Chapter 6 Processor Instructions

OR

OR Logical Inclusive OR

Opcode Instruction Clocks Description
0Cib ORAL,imm3 2 OR immediate byte to AL
0D iw OR AX,imm16 2 OR immediate word to AX
oD id OREAX,imm32 2 OR immediate dword to EAX
80/1ib OR r/m8,imm3 217 OR immediate byte to r/m byte
81/liw ORr/ml6,imml6 2/7 OR immediate word to r/mword
81/1id ORr/m32,imm32 2/7 OR immediate dword to r/m dword
83/1ib ORr/ml16,imm8 2/7 OR sign-extended immediate byte to r/m word
83/1ib ORr/m32,imm8 2/7 OR sign-extended immediate byte to r/m
dword
08/r ORr/m8,r8 2/6 OR byte register to r/m byte
09/r OR r/m16,r16 2/6 OR word register to r/mword
09/r OR r/m32,r32 2/6 OR dword register to r/m dword
OA Ir ORr8,r/m8 2/7 OR r/m byte to byte register
0B /r OR r16,r/m16 2/7 OR r/mword to word register
0B /r OR r32,r/m32 217 OR r/m dword to dword register
Operation

Dest := Dest OR Src;

CF :=0;

OF = 0;
Discussion

A corresponding result bit is O if both corresponding bits of the operands are 0;
otherwise, the result bit is 1.

Flags Affected
OR clears OF and CF; SF, ZF, and PF as described in Appendix A; AF is undefined

ASM 386 Assembly L anguage Reference Chapter 6 353

OR

Exceptions by Mode

Protected

#GP(0) if the result isin a nonwritable segment; #GP(0) for an illegal memory
operand effective addressin the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal addressin the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

354 Chapter 6 Processor Instructions

OouT

OUT output to Port

Opcode Instruction Clocks Description

E6ib OUTimm8AL 10,pm=4T/24% Output byte AL to immediate port
number

E7ib OUT imm8AX 10,pm=4T/24% Output word AX to immediate port
number

E7ib OUT imm8,EAX 10,pm=4T/24% Output dword EAX to immediate port
number

EE OUT DX,AL 11,pm=5T/25% Output byte AL to port number in DX

EF OUT DX,AX 11,pme=5T/25% Output word AX to port number in DX

EF OUTDX,EAX 11pm=51/25% Output dword EAX to port number in DX

T1f cPL <= 10PL
¥ If cPL > I0PL or if in virtual 8086 mode
Operation

IF (PE =1 AND ((VW =1) OR (CPL > IOPL)) THEN
(*virtual 8086 npde, or protected node with CPL > | OPL*)

I'F NOT | OPerm ssion(Dest, width(Dest)) THEN #GP(0);
[Dest] := Src; (*I/0O address space used*)

Discussion

OUT transfers data from the register (AL, AX, or EAX) given as the second operand
to the output port numbered by the first operand. Output to any port from 0 to
65535 is performed by placing the port number in the DX register and then using
an OUT instruction with DX asthefirst operand. If theinstruction contains an
eight-bit port ID, the value is zero-extended to 16-bits.

If executed in virtual 8086 mode or in protected mode with CPL greater than | OPL:

* OUT cannot access any given byte unless the 1/O permission bit map has a
corresponding clear bit.

e OUT aso cannot access a dword or word unless it can access every bytein the
dword or word.

Flags Affected

None

ASM 386 Assembly L anguage Reference Chapter 6 355

ouT

Exceptions by Mode

Protected

#GP(0) if the current privilege level is higher (hasless privilege) than | OPL and
any of the corresponding I/O permission bitsin TSS equals 1

Real Address

None

Virtual 8086
#GP(0) if any of the corresponding 1/0 permission bitsin TSS equals 1

356 Chapter 6 Processor Instructions

OUTS/OUTSB/OUTSW/OUTSD

OUTS/OUTSB/OUTSW/OUTSD Output String to Port

Opcode
6E
6F
6F
6E
6F
6F

Instruction Clocks Description

OUTSDX,r/m8 14,pm=8T/28% Output byte [(E)SI] to port in DX
OUTSDX,/m16 14,pm=81/28% Output word [(E)SI] to port in DX
OUTSDX,/m32 14pm=81/28% Output dword [(E)SI] to port in DX

OUTSB 14,pm=8T/28% Output byte DS:[(E)SI] to port in DX
ouUTSW 14,pm=8T/28% Output word DS;[(E)SI] to port in DX
OUTSD 14,pm=8T/28% Output dword DS:[(E)SI] to port in DX

T1f cPL <= 10PL
¥ 1f CPL > I0PL or if in virtual 8086 mode

Operation

| F AddressSi ze = 16 THEN
Use SI for Srclndex;
ELSE (* AddressSize = 32 *)
Use ESI for Srclndex;
IF (PE=1) AND ((VW= 1) OR (CPL > IOPL)) THEN
(*virtual 8086 npde, or protected node with CPL > | OPL*)
I'F NOT | OPerm ssion(Dest, width(Dest)) THEN #GP(0);
I F byte type instruction THEN

[DX] :=[Srclndex]; (*wites at DX I/ O address*)
IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE (*word or dword operand*)
[DX] := [Srclndex];
| F OperandSi ze = 16 THEN
IF DF = O THEN IncDec := 2 ELSE IncDec := -2;

ELSE (*OperandSi ze = 32*)
IF DF = O THEN | ncDec :
Srclndex := Srclndex + |ncDec;

4 ELSE IncDec := -4;

Discussion

OUTS transfers data from the memory byte, word, or dword at the source index

register to the output port numbered by DX. ESI isthe source index register if the
address size attribute is 32-bits; Sl isthe source index register if the address size

attribute is 16-bits.

OUTS does not allow specification of the port number as an immediate value. The

port must be addressed through the DX register. Load the correct valueinto DX

before executing QUTS.

ASM 386 Assembly L anguage Reference Chapter 6

357

OUTS/OUTSB/OUTSW/OUTSD

The source data address is determined by the contents of ESI or SI, not by the
second operand. Load the correct index value into (E)SI before executing QUTS.
The second operand determines:

» Thedatatype: whether abyte, word, or dword is transferred

* Segment addressability: whether a segment override byte is produced, or
whether the default segment register (DS) is used

After the transfer, (E)SI advances automatically. If the direction flagis0 (CLD
was executed), (E)SI increments; if the direction flag is 1 (STD was executed),
(E)SI decrements. (E)SI increments or decrements by 1 if abyte isoutput, by 2 if a
word is output, or by 4 if adword is output.

OUTSB, OUTSW and OUTSD are synonyms for the byte, word, and dword QUTS
instructions. They are simpler, but they provide no type or segment checking.

If executed in virtual 8086 mode or in protected mode with CPL greater than | OPL:

e QOUTS cannot access any given byte unless the 1/O permission bit map has a
corresponding clear bit.

e QUTS also cannot access a dword or word unless it can access every bytein the
dword or word.

OUTS can be preceded by the REP prefix for block output of (E)CX bytes or words.
See the REP instruction for details on this operation.
Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if CPL isgreater than IOPL and any of the corresponding 1/O permission
bitsin TSS equals 1; #GP(0) for an illegal memory operand effective addressin the
CS, DS, or ES segments; #SS(0) for an illegal address in the SS segment;
#PF(fault-code) for a page fault

358 Chapter 6 Processor Instructions

OUTS/OUTSB/OUTSW/OUTSD

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

#GP(0) if any of the corresponding 1/0 permission bitsin TSS equals 1; #PF(fault-
code) for a page fault

ASM 386 Assembly L anguage Reference Chapter 6 359

POP

POP Pop Stack Top

Opcode Instruction Clocks Description

8F /0 POP m16 5 Pop top of stack into memory word
8F /0 POP m32 5 Pop top of stack into memory dword
58 +rw POPr16 4 Pop top of stack into word register
58 +rd POP 32 4 Pop top of stack into dword register
1F POPDS 7,pm=21 Pop top of stack into DS

07 POPES 7,pm=21 Pop top of stack into ES

OF Al POPFS 7,pm=21 Pop top of stack into FS
OF A9 POP GS 7,pm=21 Pop top of stack into GS
17 POP SS 7,pm=21 Pop top of stack into SS

Operation

| F Dest = Sreg AND nbde =